Как сделать объемную руку из бумаги: схемы, проекты, этапы и особенности изготовления бумажных рук (видео и 115 фото)


Что только не придумаешь, сидя дома на карантине! Недавно мы с детьми решили сделать механическую роборуку. Правда, не из космического сплава, а из обычного картона, но управлять ею не менее интересно. Дети помогали ее строить, а теперь с удовольствием играют с ней дни напролет.

Расходные материалы:

  • Картон;
  • 2 карандаша (вам понадобится хотя бы один карандаш для отслеживания);
  • пряжа;
  • краска или любые другие отделочные материалы;
  • соломка для коктейля;
  • горячий клей;
  • ножницы.

Как сделать продвинутую роботизированную руку

Доброго дня, мозгоинженеры! Это мозгоруководство расскажет вам как своими руками создать высококачественную роботизированную руку, причем с малыми затратами по себестоимости.

Данная «open source» мозгоподелка превосходит аналогичные робо-руки не только по цене сборки, но и по производительности, и не уступает даже промышленным. А если использовать в ней биоэлектрическое управление, то она достаточно легко выполняет захват различных предметов, таких как электроотвертка, крышка или батарейка.

Шаг 1: Сравнение производительности аналогов

Как уже было сказано, данная самоделка не уступает промышленным аналогам, и достигнуто это тщательным подбором компонентов. На первой представленной таблице показано сравнение характеристик двигателя, который используется в коммерческих робо-руках и выбранным мной.

Зная производительность двигателей из промышленных аналогов, я подобрал подходящий по мощности, но более дешевый двигатель, то есть сила сжатия пальцев моей робо-руки как и у промышленных. Но как показано на второй таблице, скорость пальцев моей мозгоподелки выше коммерческих аналогов, что облегчает захват предметов и повышает производительность. На третьей таблице показаны размер и вес компонентов робо-руки и аналогов, и исходя из них видно, что использование 3D компонентов облегчает общий вес поделки.

По сравнению с OpS (open source) аналогами сила захвата данной робо-руки в 2.5 раза больше, вес на 20% меньше, а ладонь примерно наполовину тоньше. То есть по характеристикам эта самоделка имеет преимущества для пользователя. Кроме того, пальцы робо-руки действуют более согласовано, суставы сгибаются пропорционально и надежно каждый раз, что обеспечивает поделке стабильное и производительное функционирование. Конструкция многих OpS аналогов проста – «сухожилие» просто проходит внутри пальца и стягивается по принципу лебедки, что приводит к неловким, резким движениям руки и несогласованности суставов.

И все же, несмотря на описанные преимущества, данная робо-поделка имеет и недостатки. Так напечатанные 3D компоненты более подвержены механическим повреждениям по сравнению с металлическими компонентами аналогов, то есть их проще сломать, но и при этом, проще отремонтировать. Еще в этой робо-руке отсутствует фиксирующий механизм, то есть необходимо постоянно прикладывать силу для удержания захвата, что снижает энергоэффективность.

Шаг 2: Компоненты

Конструкция этой робо-руки разрабатывалась на основе общедоступных и 3D-печатных компонентов, весь список которых, а также места приобретения, представлены в таблицах на мозгофото. Конкретные ссылки я не привожу из-за частой смены поставщиков, но если какой-либо компонент недоступен, то не бойтесь менять его на аналогичный!

Свои 3D-компоненты я распечатал с разрешением 0.2мм и 10% заполнением, что обеспечивает довольно быструю печать (около 14 часов) с необходимой прочностью получаемых деталей. Вам я тоже советую печатать детали для этой робо-поделки на максимальных значениях разрешения и заполнения вашего принтера.

Шаг 3: Сборка пальцев

Все пальцы, включая и большой, собираются однотипно, и этот процесс подробно показан на фото, а еще подробнее в инструкции.

На одном конце металлического тросика завязываем узел и скрепляем его каплей супер-клея, затем пропускаем тросик сквозь отверстие катушки до упора узелка. Пропускаем так, чтобы узелок оказался сверху катушки, а свободный конец выходил из нижнего отверстия.

Берем двигатель и нанизываем на его вал катушку, при этом нанизываем так, чтобы плоскость катушки плотно прилегла к плоскости вала, иначе есть риск повредить ее.

В элемент корпуса двигателя вставляем в небольшие отверстия два 6мм-х винта М2, аккуратно устанавливаем этот элемент на двигатель, находим нужное положение катушки/двигателя и закрепляем винтами.

Собираем элементы кончика пальца и связку, для крепления используем винты и гайки М2. При этом крепим не плотно, оставляя достаточную степень свободы суставам.

Через среднюю фалангу пропускаем связку и соединяем с верхней частью пальца, ориентируемся при этом на фото, а затем скрепляем 20мм-ми винтами М2 обе части пальца.

Далее соединяем связку с соответствующим отверстием в корпусе двигателя и закрепляем ее 12мм-м винтом М2, для этого потребуется полностью согнуть палец.

Соединяем палец с корпусом двигателя и через отверстие в нижней части скрепляем 20мм-м винтом М2.

Пропускаем свободный конец тросика внутри корпуса двигателя и через отверстие в нижней части пальца, завязываем узел, закрепляем его каплей супер-клея и обрезаем лишний конец тросика кусачками.

Повторяем все шаги с оставшимися пальцами, в том числе и большим, который хотя и имеет некоторое отличие в деталях, собирается аналогично. Когда все пальцы собраны, приступаем к ладони: берем пластину с 4 отверстиями, это задняя часть, и крепим к ней собранные пальцы на 6мм-ые винты М2. После этого устанавливаем переднюю пластину и закрепляем ее в двух местах к крайним пальцам 6мм-ми винтами М2.

Шаг 4: Сервопривод

Приступаем к окончательной мозгосборке. Берем сервопривод и вставляем в распечатанный для него суппорт, который должен плотно подходить к сервоприводу.

На большой палец монтируем кронштейн, который будет сцеплять его с сервоприводом и закрепляем 6мм-м винтом М2.

Кронштейн большого пальца соединяем с сервоприводом и закрепляем винтами, после этого прикладываем всю конструкцию большого пальца/сервопривода к передней пластине руки и в соответствующих местах скрепляем 6мм-ми винтами М2.

Механическая сборка завершена!

Шаг 5: Управление

Обычно современные протезы управляются биоэлектрическим контроллером, который считывает небольшие напряжения мышц, называемыми электромиографическими (ЭМГ) сигналами. Анализируя эти сигналы, контроллер понимает, какие мышцы задействованы, и, следовательно, какое положение должен принять протез. Для этого процесса требуется комплексный 8-ми канальный EMG чип и программный алгоритм обучения, который называется линейный дискриминантный анализ. Но это вопрос более продвинутого и ответственного применения самоделки, который требует больших познаний в электронике и программировании, а сейчас поступим проще.

Второй способ подходит для людей занимающихся компьютерными технологиями. Суть его в создании PID-контроллера или кнопочного управления для перемещения руки в различные положения.

На этом все, надеюсь было полезно. Удачи в вашем мозготворчестве!

( Специально для МозгоЧинов#Tact-Low-cost-Advanced-Prosthetic-Hand

Источник

Сайт про изобретения своими руками

Что растет на рынке робототехники

Наибольшее развитие среди всех направлений получила промышленная робототехника. Первые автоматизированные промышленные роботы появились еще в 1947 году — толчком к их появлению стало развитие ядерной энергетики. Сегодня этот рынок продолжает расти: операции по сварке, гибке, пайке и другим действиям в большинстве крупных предприятий уже давно выполняют роботы, и количество решений с каждым годом только растет.

Материал по теме

Несильно отстает от промышленной бытовая робототехника. Так, в каждом пятом доме России уже давно работает робот-пылесос. Часто в быту используются и роботы-мойщики окон и бассейнов, а такие гиганты, как Amazon, Google, «Яндекс», МТС — выпускают голосовых помощников для дома. Активно развивается и рынок сервисных роботов. Сегодня в аэропортах можно встретить роботов-консультантов, в МФЦ людей обслуживают электронные помощники, а в доставке уже используются роботы-курьеры.

Реклама на Forbes

Еще одна сфера, достойная внимания, — медицинская робототехника. Одно из самых популярных решений тут — четырехрукий робот da Vinci, который держит в руках инструменты. Для реабилитации людей, перенесших инсульт или паралич, используют наработки ExoChair. Это пассивный роботизированный экзоскелет, созданный российским стартапом «Полезные роботы» и конструкторским бюро «Карфидов Лаб» при инженерной поддержке Лаборатории робототехники Сбербанка.

Материал по теме

Большинство автоконцернов, включая Tesla, Mercedes, Volkswagen, а также далекие от автопрома «Яндекс» и Uber занимаются исследованиями в области беспилотных транспортных средств. Помимо автомобилей-беспилотников в современном мире активно используются и беспилотные летательные средства — как в военной промышленности для разведывательных операций и бомбардировки, так и в гражданской отрасли для развлечений и видеосъемки.

По данным Международной Федерации робототехники (IFR), продажи сервисных роботов во всем мире в 2018–2019 годах выросли на 32% — до $11,2 млрд. Продажи логистических роботов увеличились более чем вдвое — на 110%, а медицинских — на 28%. Общее количество проданных сервисных роботов для личного и домашнего использования увеличилось на 34% и в 2022 году достигло 23,2 млн штук.

Материал по теме

В пандемию эти виды робототехники стали расти еще быстрее: люди на удаленке активно покупают бытовых роботов, а игроки растущих рынков логистики и медицины — разрабатывают и продают устройства для замены курьеров и медиков. С 2019-го по 2022 год количество крупных компаний, внедряющих роботов, увеличилось вдвое, свидетельствуют данные Национальной ассоциации участников рынка робототехники (НАУР).

Потрясающий способ сделать механические руки монстра своими руками

Всем привет. Костюмы на Хэллоуин могут быть разных форм и размеров. Например, костюм железного человека или бэтмена носят простые парни, которые ходят с нами по одной улице

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]