Я собрал 3D-принтер за 8000 рублей. Вы тоже можете

Неделю назад я рассказывал о возможностях 3D-печати и том, как именно FDM-технология облегчает нашу жизнь. Статья набрала пусть и немного, но вполне достаточно положительных откликов, чтобы продолжать данную тему, а значит цикл материалов можно считать открытым:)

Сразу хотел бы предупредить, что не хочу превращать статьи в дотошное руководство 3D-печатника. Этого добра на просторах рунета предостаточно. Моя же цель — лишь натолкнуть и подсказать варианты, способы и идеи, которые упростят жизнь человека, который заинтересуется этой отраслью.

Ну что, поехали. После вводного экскурса время действовать. Тема сегодняшней статьи — закупка комплектующих.

Перед тем, как отдать свои кровные

Первое предупреждение — будет непросто. Самостоятельная сборка 3D-принтера требует усидчивости и терпения. Я буду счастлив, если у вас все будет получаться с первого раза, но, по собственному опыту скажу, что без ложки дегтя в 3D-печати не бывает.

Перед покупкой комплектующих для самостоятельного построения принтера сразу же хочу отметить, что для нас самое важное — максимально ужатый бюджет.

И дело не совсем в экономии. Лично мне бы очень хотелось, чтобы вы испытали тот восторг, который наступает после печати первой детали на устройстве, которое создано вашими руками.

Собирать будем классическую модель Prusa i3. Во-первых, это максимально бюджетный вариант исполнения принтера. Во-вторых, он очень популярен и найти пластиковые детали для этой модели не проблема.

Наконец, апгрейдить эту модель одно удовольствие. Делать это можно бесконечно долго, но главное, видеть заметные улучшения после вложения очередной сотни-другой рублей.

Под «механикой» мы подразумеваем как статичные, так и движущиеся элементы принтера. От правильного выбора механики напрямую зависит качество моделей, которые он способен будет печатать.

Существует буквально сотни всевозможных модификаций и вариантов исполнения того самого принтера Prusa i3. Вариантов замены комплектующих или их аналогов тьма, поэтому всегда можно что-то изменить или исправить.

Расходные материалы для SLM и DMLS

Эти технологии позволяют вести печать на основе алюминия, титана, инконеля, кобальтового хрома и прочих металлов и металлических сплавов. Сфера применения порошков этих металлов чрезвычайно широка: от медицины до аэрокосмической отрасли. Серебром, золотом, палладием и платиной печатают в основном в ювелирной отрасли, за ее пределами эти материалы не слишком востребованы.

ВНИМАНИЕ : расценки на металлические порошки остаются высокими и могут составлять в районе $400 долларов за 1 кг. Поэтому сегодня в 3D выгодно печатать в первую очередь мелкие металлические детали, которые слишком сложно или дорого создавать традиционными способами.

Традиционными способами крайне трудно работать с суперсплавами кобальта-хрома или никеля. 3D-принтеры же создают из такого порошка изделия с почти чистой поверхностью, которую потом можно доработать более привычными методами.

Корпус

На что влияет. Корпус обеспечивает жесткость всей конструкции. Учтите, что во время печати хотэнд будет постоянно перемешаться вверх, вниз, влево, вправо, вперед и назад. Иногда эти движения будут очень резкими и быстрыми, поэтому, чем надежнее будет корпус, тем лучших результатов вы достигните.

Варианты. Чертеж рамы есть в открытом доступе (тут или тут). Дальше остается обратиться в конторы, занимающиеся резкой фанеры, ДСП, акрила или металла.

Из стали 3-4 миллиметра выйдет подороже, потяжелее, но надежнее. Из фанеры 6 – 8 мм дешевле. Есть варианты и из акрила.

Финансовый совет. Готовые варианты рам на AliExpress и Ebay сразу отметайте. Там просят в три-четыре раза большую сумму. Полистайте доски объявлений по месту жительства. Средняя стоимость корпуса из фанеры варьируется в пределах 600 – 1000 рублей. Все, что дороже — от лукавого.

Цена вопроса: 800 рублей (здесь и далее – приблизительная стоимость).

Какие есть принтеры для быстрой сборки

При детальном исследовании рынка на eBay, Amazon и AliExpress можно найти массу комплектов для быстрой сборки принтера.

На данный момент наиболее актуальными моделями можно считать JGMaker Magic и Tronxy XY-2 Pro.

Обе модели предварительно собираются поставщиком, проходят отладку, проверку печати, а потом разбираются на базовые узлы для последующей транспортировки и работы на месте.

Мелкие отличия касаются собственно конструкции и разделения на узлы.

Я выбрал первую модель (пожалуй, сказался негативный опыт с первым, ещё не до конца побежденным принтером Tronxy).

Направляющие (валы)

На что влияет. Плавность хода сопла, ровность слоев.

Варианты. Направляющих для Prusa i3 нужно ровно шесть штук. По две на каждую ось (X, Y, Z). Размеры следующие:

  • 2 x 370мм (ось X)
  • 2 x 350мм (ось Y)
  • 2 x 320мм (ось Z)

Общепринятый стандарт для валов 3D-принтера — 8 мм. И гнаться за 10 или 12 мм смысла нет. Вес головы хотэнда не такой значительный, что бы на расстоянии в 370 мм гнуть вал.

Хотя, если у вас есть лишние деньги, можно извратиться и купить 12 миллиметровые валы. Вот только подшипники и подгонка пластиковых деталей потом выйдет дороговато.

Финансовый совет. Перфекционистам на заметку: рельсовые направляющие, конечно же, отличная штука. Но их стоимость даже в Китае откровенно пугает. Оставьте эту модернизацию на будущее.

К слову, валы можно купить как на AliExpress (тут или тут), так и по месту с тех же досок объявлений. Самый доступный вариант — отправиться на блошиный рынок и найти на разборке принтеров и старой оргтехники (МФУ, сканеры) шесть нормальных валов.

Главное, вооружитесь штангенциркулем. Все валы должны быть строго одного диаметра. Цена за штуку получится в районе 60 – 70 рублей.

Цена вопроса: 420 рублей (вариант блошинного рынка).

Почему 3D-печать проста, но не популярна?

Все, что раньше требовало специальных навыков, теперь сводится лишь к трём. Достаточно уметь:

1. Создавать 3D-модели в любом CAD-пакете. 2. Собирать и обслуживать принтер. 3. Управлять процессом при помощи базовых знаний программирования.

Вот и все пресловутые аддитивные технологии в быту: можно скачать готовую модель для печати, её преобразование в код неплохо выполняет Cura.

Остаётся главное: собрать принтер. И это непросто.

Некоторые конструкции, приобретаемые в виде конструктора или собираемые собственноручно из отдельных комплектующих, требуют к себе не только постоянное внимание во время эксплуатации, но и длительную сборки с трудоёмкой наладкой.

Не лучший способ для старта. В результате технология остаётся уделом гиков, инженеров и некоторых фанатов: любителей настольных игр и владельцев редких автомобилей, которым такой способ изготовления деталей или фигурок позволяет серьезно экономить бюджет.

Умельцев с достаточной мотивацией очень мало, поэтому большинство обращается к тем, кто уже освоил принтеры в силу начальной подготовки и наличия значительного запаса времени.

А может быть иначе, хотя бы для самых простых задач? Может. Трёхмерную печать дома освоит даже маленький ребенок.

Подшипники

На что влияет. Уровень шума, качество печати, ровность слоев и граней детали.

Варианты. И снова все упирается в бюджет. Можно заказать подшипник в блоке (модель SC8UU, например, тут). Можно просто линейный подшипник LM8UU. Можно остановиться на бронзовых или латунных втулках генератора автомобиля. Главное, подобрать нужный размер.

Наконец, можно заказать подшипники у 3D-печатника, у которого будете покупать детали для своего принтера (об этом ниже). Готовые подшипники всех размеров есть тут.

Запомните, для Prusa i3 вам нужны 12 линейных подшипников.

Финансовый совет. Не спешите заказывать подшпиники в Китае. Не факт, что выйдет дешевле. Варианты по 40 – 60 рублей за штуку можно найти и в «родных краях».

Цена вопроса: 600 рублей.

Преимущества самодельного 3D принтера перед покупным

Сборка самодельного 3D принтера теперь доступна каждому. Для этих целей нужно иметь немного инженерного образования, навыков программиста, затраченное время и некоторую сумму денег, примерно в 25000 руб. Для многих легче потратить 15-20 тысяч на готовую модель. Но из-за дешевого качества китайской сборки прибор прослужит недолго. Такая причина вполне оправдана.

Основным отличием покупного 3D принтера является то, что корпус сделан из акрила и фанеры. Это ведет за собой ряд неприятных последствий:

  • прибор нуждается в постоянной калибровке цветов;
  • положение неустойчивое, и качество печати ухудшается;
  • жесткая печать комплектующих.

Главное преимущество самодельных 3D-принтеров над покупными заключается в качестве рамы. Можно использовать стальной материал. Это придаст лучшей фиксации аппарату и увеличит срок его службы.

Использование в домашних условиях позволит самостоятельно изготавливать детали, которые можно делать только на станках. Например, создать корпус авто.

Справка! С помощью трехмерного принтера можно распечатать протез. А с учетом использования его дома, это будет стоить намного дешевле, чем в медицинских учреждениях.

Зачем собирать 3д принтер своими руками, и в чем его преимущество перед покупным, узнаете из этого видео:

Пластиковые детали

Самое время обратиться к тем, у кого уже есть 3D-принтер. Поищите объявления «3D печать в вашем городе». Обсудите стоимость печати комплекта деталей для Prusa i3.

Как правило, оценивают за грамм печати, но есть и готовые комплекты. Тянуть это добро из Китая нет никакого смысла.

Цена вопроса: около 1000 рублей, но зависит от наглости печатника.

Собирать самому или покупать готовый?

На страницах iPhones.ru появлялась история о самостоятельной сборке принтера. К сожалению, настройке и отладке оборудования уделялось совсем немного.

Тем не менее и в том случае принтер не печатал идеально прямо из коробки, точнее, сразу после сборки. Тоже самое ждёт большинство готовых комплектов, приобретаемых в виде конструктора.

Что ж, каждый раз такая история. Мой первый Tronxy X3 был собран за несколько дней, после чего потребовал 2 недели на доводку. И ещё месяц на мелкие ремонты, замены комплектующих и повторную отладку.

Впечатление было испорчено: кривые фигурки и детали раз за разом отбивали желание работать. Пришлось менять силовые элементы, направляющие и докупать дополнительные датчики.

Детали наборов «сделай сам» проходят минимальный контроль. Поэтому, покупая принтер в виде набора деталей, можно столкнуться с низким качеством отдельных элементов или отсутствием чего-либо.

Если покупать и собирать по частям, итог будет чуть лучше — можно будет проверить каждый элемент. Но выйдет значительно дольше, а иногда и дороже.

Ремни, шкивы, шпильки и прочая мелочь

Для самостоятельной сборки механики принтера остается совсем немного. По сути, это недорогие детали, рассказывать о которых слишком много не имеет смысла. Поэтому, приведу список.

  • ремень GT2 – служит для перемещения хотэнда и столика вдоль осей X и Y. Выглядит вот так. 2 метра хватит с головой.
  • шкивы GT 2 — внутренний диаметр 5 мм, количество зубьев (как правило) 20. Надеваются на шаговые двигатели (на два) для перемещения ремня GT2. Достаточно двух штук. Выглядят так.
  • шпильки — модные трапецеидальные винты с гайкой не берем. Во-первых, дорого. Во-вторых, бессмысленно. Это не ЧПУ станок. Со скоростями выше попы прыгнуть не получится, поэтому не тратьте деньги. Обычная строительная метровая шпилька диаметром 5 мм для оси Z (разрежем на два) и такая же диаметром 8 мм для закрепления частей корпуса.
  • подшипники — два для связки с ремнем GT2. Будут выполнять роль натяжителей. Желательно, чтобы внешний диаметр подшипника был равен внешнему диаметру шкива в области зубьев. Как вариант, но 50 штук вам не нужно, только два.
  • гайки, болты, шайбы — в магазине крепежа хорошенько запаситесь болтами M3 размером от 10 до 60 миллиметров. Соответственно, гайки (нужны еще и 8-миллиметровые для шпилек корпуса) и шайбы. Приблизительный список список можно найти тут.
  • муфты — будут удерживать шпильки 5 мм по оси Z. Нужно две штуки. Купить можно, например, тут. А можно попросить напечатать 3D-печатника, взяв модель отсюда.

Финансовый совет. Не стремитесь взять самое лучшее. Подходите с умом и проверяйте диаметры. Так, шпильки для Z оптимальны именно 5-миллиметровый. У 8-миллиметровых больший шаг резьбы, что отразиться на качестве печати (будут слишком характерная слоистость).

Гнаться за шкивами для ремня тоже нет смысла. Подойдет обычный подшипник. При покупке включайте фантазию. Вариант «тупо купить по списку» здесь не работает.

Цена вопроса: при большом желании можно легко вписаться в 700 – 800 рублей.

Без электроники принтер не поедет и не поймет, чего вы от него хотите. К счастью, цена на комплектующие просела значительно и можно закупиться без удара по семейному бюджету.

Теперь собственно как это собиралось, какие были трудности и как они преодолевались.

Для начала, требуется переделать шаговый двигатель EM-336 из униполярного в биполярный, снять установленную шпулю (мне брат на прессе выпрессовал, но можно и болгаркой попробовать).
Переделка

Подробно и красиво по переделке из униполярного в биполярный расписано в статье Переделка шагового двигателя из униполярного в биполярный на 3d today, жаль статья вышла через год после моих мучений, хорошо есть добрые люди, пользователю wolfs_SG

с форума ТриДэшник огромное спасибо! у меня получилось так: было


стало

Корпус
Для расчета корпуса и деталей под нужные комплектующие (толщина и длина валов, размеры области печати, способ перемещения оси Z — на винтовой шпильке или на ремне) идем на страницу проекта Smartcore на YouMagine, там описано какие комплектующие требуются и в разделе Documents скрипты для OpenJSCAD. Я использовал v.1.2 для расчета корпуса и деталей (кроме оси Z, т.к. в этой версии скрипта нет опции для расчета оси на шпильке) и v.1.0.2 для расчета деталей оси Z.(На данный момент на YouMagine что-то поломалось и скрипты не открываются. Для открытия можно сохранить скрипты на диск, зайти на openjscad.org и загрузить скрипт, сохраненный на диске). После расчета детали сохраняются в stl одним файлом и пришлось пересохранять требуемые детали в разные файлы.

Размеры корпуса уже считал сам (для боковых стенок, там где находятся крепления оси Y, лучше прибавить пару сантиметров к расчетным), под свою компоновку, затем заказал распиловку с оклейкой кромок из МДФ толщиной 10 мм на рынке у торговцев кухнями. Очень удивился, когда забирал заказ — стоимость оказалась 5$, с учетом того, что акриловая рама с крепежом и шпильками мне стоила 40$. Затем сам резал необходимые отверстия и окна и собирал на саморезы. Для красоты напечатал белых заглушек и термоклеем приклеил на шляпки саморезов. О том откуда появилась куча круглых отверстий расскажу ниже.

Оси XY

После сборки корпуса пришел черед печати деталей. Без переделки изначально напечатал 7 деталей — каретка, крепления направляющих оси X, дальние крепления направляющих оси Y и крепления шаговиков (они же передние крепления направляющих оси Y). Все детали печатал бестфиламентовским переходным PLA с заполнением 50 или 60%. При сборке оси Y вылез косяк — при попытке закрепить в правом переднем креплении направляющую, треснуло посадочное место под нее. Но с левой частью вышло еще хуже — при печати не учел одного важного факта — у принтерных шаговиков из корпуса торчит только 23 мм оси, и в силу конструкции левая шпуля находится выше чем правая, и получалось что с оригинальной деталью длины оси шаговика не хватает. Сразу начал рассматривать варианты с разными костылями, но потом осенило — у меня же есть принтер, куча пластика и Thinkercad! В Thinkercad были проимпортированы оба крепления, в них было усилено посадочное место под направляющую, и в левом креплении был поднят двигатель на 12 мм вверх. Теперь после печати и установки все стало в соответствии с задуманной конструкцией.

Еще не совсем понял как в оригинале крепятся концевики, и в том же Thinkercad были спроектированы крепления для них.

Фото концевиков

концевик оси X


концевик оси Y


концевик оси Z

Лирическое отступление:

Вообще Thinkercad — это наше все! Пробовал в компасе проектировать — не зашло, в Fusion 360 дальше регистрации и установки клиента не продвинулся, OpenSCAD неплохая штука, если нужно параметры менять, но все это не то — все это надо было изучать. «Старый стал, ленивый» ©Белое солнце пустыни. Хотелось чего нибудь типа виндового Paint’а, только в 3D. И тут под руку попался Thinkercad! В нем если разобраться примитивами, сложением и вычитанием можно несложные детали проектировать, либо подправлять импортируемые. Единственно чего очень не хватает — это инструмента для снятия фасок — вручную часто муторно и лениво. Вообщем у кого нету времени, либо лень (как мне) рекомендую.

Продолжим.
Хотэнд
Крепление хотэнда и его охлаждение из оригинального проекта мне не понравилось и я использовал крепление из этого проекта, но с некоторыми изменениями (обрезал крепление индукционного датчика и немного обрезал по краям, чтобы встало в каретку).

крепление хотэнда


печатать как на картинке, левую деталь с поддержками. Если левую деталь перевернуть по X на 90 градусов, в месте закладки гаек разорвало по слоям, несмотря на 100% заполнение. А так — 3 периметра и в путь.
Охлаждение хотэнда
Охлаждение использовал из этого проекта, только брал охлаждение для левого хотэнда, на своем повернул на 90 градусов. Как указывал в начале, хотэнд — китайский E3D V6, под 1,75 филамент, сопло на данный момент 0,4. Термобарьер проходной под 4 мм тефлоновую трубку до самого сопла. В свое время намучился с прюшей, сейчас только такие и использую. Для охлаждения хотэнда используется 3010 вентилятор, хватает, только шумные они (надо что получше, только с жабой договорится). Для охлаждения детали — турбинка 5015, но обдувает деталь только с одной стороны. В планах запилить радиальный обдув.

Каретка с хотэндом


Ось Z, стол

Крепление направляющих оси Z и крепление стола взято с этого проекта, но опять же с изменениями, к тому же и этом проекте и в оригинальном, в верхнем креплении смещено посадочное место для подшипника. Так же после сборки оказалось, что линейные подшипники болтаются в своих посадочных местах, устранил с помощью ФУМ ленты. Стол сделал куска нержавейки 15*15 см, толщиной 1,5 мм. Калибровка стола выполняется по старинке, при помощи подкручивания винтов на углах стола и бумажки. Подогрева нет, печатаю PLA пластиком. Стол покрыт обычным 4 мм оконным стеклом, закрепленном канцелярскими зажимами.На стекле наклейка, подрезанная до нужных размеров. Куплена на Али в магазине Big Tree Tech и впечатления весьма противоречивые — сразу все клеилось нормально и снималось без усилий, но по мере использования снимать напечатанное стало все труднее (если присмотреться видно две глубокие царапины от шпателя), и первый слой нормально ложиться только если протереть спиртом.

Ось Z и стол

История происхождения отверстий в стенках
После сборки и настройки, включил принтер и испугался — при перемещении по осям XY был такой звук, как если бы рядом стояли два пионера с барабанами и выбивали на них барабанную дробь. Что бы уменьшить данный эффект, взял коронки и насверлил отверстий, но эффект от такого апгрейда оказался минимальный. И проект был заброшен. Через некоторое время на тудейке прочитал статью о замене и использовании драйверов TMC2208. Драйвера были заказаны и через месяц ожидания установлены. После установке эффект поразительный — самый громкий узел — это тот самый вентилятор 3010. А прорезанные отверстия пришлось облагоражитвать, но зато есть за что держать при переноске :)

Электроника и прошивка

Стандартный набор начинающего конструктора — Arduino Mega 2560 + RAMPS 1.4. Ардуина со своим бзиком — на комплектном полуметровом USB кабеле с компом работает нормально. На более длинных уже все — вилы. Смена портов, USB 3.0 — фиолетово, не работает и все. Для графического отображения и работы с картой памяти, изначально хотел сделать на OLED, как в этой статье. Все купил, собрал, настроил, включил… и не взлетело :( Изображение появляется на секунду и исчезает. Почему так, понять не смог, а познаний в ардуиностроительстве маловато. Для исправления ситуации на Banggood заказал MKS Mini 12864LCD за 9$ (тогда еще купоны 5 от 10 за поинты работали, было время). При покупке учитывайте, что для RAMPS нужен адаптер. С этим котроллером все пошло повеселее — все взлетело с первого раза. Контроллер надо было как то красиво разместить — и опять взялмодель из этого проекта и творчески переработал :) Про драйверы написано выше — 2*TMC2208 (ось X,Y), 2*A4988 (ось Z, экструдер). Драйвера настраивал на ток 0,7-0,8А. При настройке TMC2208, есть серьезный нюанс —
настройка тока производится при отключенных двигателях!
Когда менял A4988 на TMC2208, то в прошивке ничего не трогал, перемычки в RAMPS’е тоже не вынимал, только разъемы шаговиков перевернул (можно было ничего не трогать, тогда в прошивке надо было менять параметр INVERT_X_DIR, INVERT_Y_DIR, но в силу природной лени развернуть разъемы оказалось быстрее). И чуть не забыл, очень рекомендуется в меню принтера и
сбросить настройки EEPROM
. Поскольку печатаю PLA и нет подогрева стола, то запитано блоком питания на 10А, чего вполне достаточно. Дабы бутерброд из меги, рампса и драйверов меньше грелся, используется 8 сантиметровый вентилятор из старого блока питания (по моим подозрениям еще из АТ БП и лет ему под 30, но довольно таки тихий для своего возраста).

Для управления всем добром используется Marlin 1.1.5 (на момент сборки это была актуальная версия). Прошивка была взята с marlinfw.org и настроена с нуля. Поскольку уже была собрана прюша и ремни, шпули и шпильки используются одинаковые, почти все основные параметры были взяты из прюшиной прошивки. Поскольку используется кинематика CoreXY, чуть голову не поломал с этими параметрами:

#define INVERT_X_DIR true #define INVERT_Y_DIR true #define INVERT_Z_DIR true Брал их из прошивки оригинально проекта, подсматривал у других, переворачивал разъемы шаговиков и хоть ты тресни не двигалась каретка по осям XY так как надо — если по одной оси нормально, то по второй в инверсии. Но в конце концов нашел требуемую комбинацию и все заработало так как надо. Если кому интересно — ссылка на Гуггл драйв с прошивкой.

Электроника и прошивка

Остался держатель катушки. Это квинтэссенция из двух проектов — крепление и держатель катушки. Поскольку я печатаю на балконе, а сам принтер хранится в комнате, то вышло очень практично и сильно уменьшает габариты при хранении.

Держатель катушки

Шаговые двигатели

Это самая дорогостоящая статья расходов при самостоятельно сборке 3D-принтера. Нужно 5 штук Nema 17. Как правило, беру на 1.7А по току. Их мощности будет предостаточно. Диаметр валов – 5 мм. Присмотреться можно тут.

Да, не забудьте уточнить наличие соединительных проводов, чтобы потом не плясать с паяльником.

Финансовый совет. И снова блошиный рынок и разборка МФУ, принтеров и плоттеров. Поинтересуйте о ценах на шаговые двигатели. Иногда пять движков Nema 17 можно прикупить за смешные 800 – 900 рублей.

Важно: выбирайте движки так, чтобы у них было одинаковое количество шагов на оборот (например, 200). Двигатели без маркировки брать несколько геморройно, поскольку потом замучаетесь подбирать правильные параметры при настройке ПО.

Закрепление Y-MOTOR оси

Когда основание рамки будет построено, можно продолжить завершение закрепления оси Y. Для этого понадобятся следующие детали для 3D-принтера:

  1. NEMA 17 HR 0,9 градуса на шаг 4,0 кг/см шагового двигателя.
  2. Номер детали: 42BYGHM809.
  3. 20-ти зубчатый шкив GT21 метр газораспределительного механизма GT2.
  4. Винты 5x M3 x 12 мм.
  5. Шайбы — 4x M3.
  6. Гайки — 2x M3.

Начинают с присоединения шагового двигателя к части Y-MOTOR на задней части рамы. Также прикрепляют шкив GT2 к валу двигателя. После чего нужно его отрегулировать.

Далее подключают Y-BELT-HOLDER к платформе рабочей площадки. Используют винты M3 x 12 мм с шайбами и гайками. Ось Y будет перемещена с использованием ремня GT2. Теперь прикрепляют ремень GT2 и оборачивают его вокруг шкива GT2. Закрепляют ремень к Y-BELT-HOLDER с помощью кабельных стяжек, и регулируют натяжение ремня с помощью винта M4 на Y-образном упоре.

Плата управления

Эталон для Prusa i3: плата Arduino Mega + модуль расширения Ramps 1.4 (например, такой вариант). Это самый доступный и универсальный вариант для управления принтером.

Совет. Обязательно убедитесь, что в наличии есть джемперы (маленькие перемычки контактов). В идеале, их должно быть не менее 18 штук. Если не будет, замучаетесь потом искать их в своем городе, хотя и стоят они рубль за ведро.

Собрал принтер за полчаса. Как это было

Сборка и настройка JGMaker Magic проста до безобразия. Все операции по замерам, которые сопутствуют обычным китайским принтерам, исключены.

Ремни заранее зафиксированы на нужно длине, профиль аккуратно отрезан и предлагает единственный способ сборки без возможности регулировки, жгуты и клеммы подписаны. Нужно только собрать.

Сборка занимает этапов:

1. Распаковка и освобождение деталей от транспортировочной плёнки.

2. Установка первой каретки на профиль оси X.

3. Монтаж печатной головки на ось X.

4. Завершение сборки оси Х установкой второй каретки и приводного ремня.

5. Монтаж двигателя оси Y.

6. Установка второго вертикального профиля.

7. Соединение осей X и У.

8. Установка шпилек — ходовых винтов (требует контроль угла установки).

9. Фиксация верхней планки и завершение механических работ.

10. Подключение проводов по маркировке согласно инструкции.

11. Интеграция трубки подачи пластикового прутка в печатную головку.

12. Вставляем комплектную флеш-карту в принтер.

13. Включаем в сеть 220В.

Готово, можно печатать. В зависимости от навыков, процесс занимает 15-30 минут и требует только инструментов из комплекта принтера.

Драйвера шаговых двигателей

Это миниатюрные платки, которые будут управлять шаговыми двигателями. Считаем сколько нужно:

  • 2 драйвера A4988 для оси Z (вот такие)
  • 1 драйвер A4988 для оси Y
  • 1 драйвер A4988 для оси X
  • 1 драйвер DRV8825 для экструдера (например, такие)

Можно взять лотом, можно по отдельности. Я специально написал один драйвер DRV8825, поскольку у него максимальное деление шага 1 к 32, что позволяет более точно выдавливать пластик во время печати очень мелких деталей.

Теоретически можно взять и все пять A4988 или комплект из пяти DRV8825. Тут уж решать вам, но один DRV8825 в сборке строго приветствуется.

Совет. Попадете на распродажу, не поленитесь взять парочку драйверов про запас. При первичной сборке есть риск, что один из драйверов обязательно спалите:)

Основные характеристики SLM & DMLS

В SLM-устройствах лазер расплавляет каждый слой металлического порошка по отдельности. Температуры резко меняются, из-за чего в деталях возникают внутренние напряжения. Это может негативно сказаться на качестве продукции, хотя оно в любом случае будет выше, чем при литье. Изделия, распечатанные на SLM-принтерах, превосходят DLMS-аналоги по запасу прочности и по монолитности.

При работе по DLMS-технологии внутренние напряжения не создаются, поэтому качество изделий несоизмеримо выше, чем у аналогов, изготовленных посредством штамповки или литья. Это особенно востребовано для аэрокосмической и автомобильной отраслей, так как используемые в них комплектующие должны быть исключительно прочными.

Хотэнд и механизм подачи пластика

Именно в этом блоке происходит магия 3D-печати. Тут греется пруток пластика и выдавливается сквозь миниатюрное сопло. Не буду ходить вокруг да около. Проверенный годами вариант — версия хотэнда V6 с кулером, терморезистором 100к, нагревательным элементом, радиатором, тефлоновой трубкой. Например, такой.

Механизм подачи пластика (будет крепиться на один из двигателей NEMA 17) лучше взять металлический. Во-первых, удобнее собирать, во-вторых, полностью исключен пропуск шагов во время печати.

SLM или DMLS: в чем разница?

Обе эти технологии сегодня активно применяются для 3D-печати по металлу. SLM предусматривает выборочное лазерное плавление металлического порошка, а DMLS — прямое лазерное спекание металла. В обоих случаях для выборочного плавления крупиц металлического порошка задействуют лазер, связывают эти крупицы воедино и создают изделия послойно.

Разница между технологиями такова:

  • В SLM металлический порошок расплавляется.
  • В DLMS применяются не настолько высокие температуры, поэтому металл не переходит в жидкое состояние. Частицы порошка просто спекаются между собой.

Обе технологии защищены патентами.

Столик, пружины, стекло, концевики

Платформа, на которой будет расположена 3D-модель, должна иметь обязательный подогрев. Температуры тут доходят до 100 – 110 градусов по Цельсию в зависимости от типа пластика.

Самый доступный и проверенный временем вариант – MK2 размером 214 х 214 мм. Не забудьте приобрести пружины для столика (нужно 4 штуки). С ними намного легче выставлять уровень сопла.

Сверху столик накрывают обычным стеклом толщиной 3-4 мм. В идеале – зеркалом. Размеры 200 х 200 мм с небольшими скосами по краям для крепежа винтов. Цена вопроса у стекольщика – около 60 рублей, везти из Китая нет смысла.

Концевые выключатели — специальные механические кнопки, которые будут ограничивать размеры стола и «пояснять» электронике где конец рабочей области принтера. Как вариант, недорогие KW12-3. Нужно 3 штуки (по одному на каждую ось).

Недорогой и быстрый старт в 3D печати

Для быстрого старта некоторые разработчики комплектов предлагают полностью собранные 3D-принтеры или наборы, скомплектованные из нескольких базовых крупных узлов: чаще всего это печатающий узел, совмещенные оси X и Y, собранные стол для печати и блок управления.

Преимущества на лицо:

1. Набор предварительно собран и проверен.

2. Несущие и силовые элементы проходят отдельный контроль качества.

3. Сборка занимает намного меньше времени.

Кроме того, обычно такие микроконструкторы на 10-15 элементов предназначены для школьников, поэтому поставляются с упрощенной прошивкой, полным набором софта и дополнительными функциями, упрощающими работу.

Блок питания

Один из ключевых элементов все электроники – блок питания. Готовый вариант, заточенный на 3D-принтеры, обойдется в 800 – 1200 рублей. Все зависит от мощности блока. Сразу скажу, что 15 А и 12 Вольт для 3D-принтера с двумя экструдерами и одним нагревательным столом будет достаточно.

Финансовый совет. Как вариант, можно задействовать компьютерный БП аналогичной мощности. Б/у вариант обойдется в 200 – 300 рублей, а работать будет также. Единственное, придется немного повозиться с развязкой проводов.

Подготовка к эксплуатации

После сборки и монтажа пользователя ждет еще несколько шагов, которые необходимо пройти для полноценного запуска самодельного устройства:

  1. Установка программного обеспечения. В данном случае потребуется скачать программу для управляющей платы Arduino. Утилиты лучше скачивать с официального сайта разработчика.
  2. Установка прошивки. Подключите Arduino при помощи USB-кабеля и скачайте официальные драйверы. Разархивируйте файл, после чего откройте приложение Marlin, через которое нужно поставить прошивку: открыть вкладку в верхнем меню «Инструменты» -> выбрать плату Arduino -> указать соответствующий порт. Далее открыть вкладку Configuration h, нажать кнопку «Загрузить».
  3. Установка программы (слайсера) на ПК для настройки и подготовки печати. Можно использовать любое совместимое приложение. Например, Cura. Настройте программу под принтер. Скорее всего, этот пункт затянется, так как пользователь сделает кучу тестов, прежде чем найдет оптимальное сочетание параметров.
  4. Калибровка платформы. Обычно это делают при помощи чистого листа бумаги формата А4. Его подкладывают между нагревательным столом и соплом экструдера. После чего выставляют зазоры при помощи регулировочных винтов.
  5. Установка филамента и загрузка нити в экструдер. Стоит заранее купить несколько катушек материала, чтобы понять, какой из них будет лучше работать в принтере.
  6. Загрузка модели в слайсер. Предварительное выставление настроек печати. Обычно принтер проверяют через модельку кубика. Это самый простой тест, который показывает детские болячки устройства.
  7. Перенос настроенной модели на SD-карту. Печать готового файла на принтере.

Это общая схема подготовки печатного устройства к работе.

Девятое: внимание экструдеру

Привод, подающий пластиковое волокно, будет состоять из шагового мотора NEMA 17 и привода шестерни MK7/MK8. Также потребуется загрузить драйвер управления элементами экструдера принтера – сделать это можно по следующим ссылкам:

  1. Экструдер в состоянии покоя:e-waste_extruder_idle
  2. «Тело» экструдера: e-waste_extruder_body
  3. «Горячее сопло»: RepRapPro_mount

Принцип работы экструдера следующий. Пластиковое волокно будет втягиваться в него и подаваться в нагревательную камеру. Между ней и барабаном с волокном волокно направляется внутрь трубки из термоустойчивого тефлона. Прямой привод собирается присоединением к нему шагового двигателя и креплением на акриловой раме. Чтобы калибровать поток пластик, измеряем расстояние и укладываем ленту на этом участке. Теперь переходим в программное обеспечение Repetier, где выставляем полученную цифру на экструдере.

Стол для печати

Сверлим в деревянной плите 20х13 см четыре отверстия диаметром 3 мм.

После этого закручиваем 4 болта M3x25.

Что предпочесть и с чего начать?

JG Maker Magic подойдёт для печати большинством популярных материалов, доступных в прутке, исключая деревосодержащие и поликомпонентные.

Также возможно доработка устройства автоматическим датчиком уровня для калибровки печатной головки относительно стола. Не лишним будет установка второй оси для перемещения стола.

Впрочем, всё это может потребоваться нескоро: принтер готов к работе даже с заводскими настройками, поменяв их уже после того, как на практике будут освоены основные понятия процесса.

При покупке в мае он обошелся мне в 14 000 рублей. Стоимость варьируется от курса и близости распродажи, но при желании, примерно в эти деньги его можно взять и сейчас.

Среди альтернатив стоит отметить уже упомянутый Tronxy XY-2 Pro с цветным экраном управления, бОльшей областью печати и наличием индукционного датчика калибровки.

Взамен придётся пожертвовать точностью (0.05 мм у Magic против 0.1 мм Tronxy). Tronxy собирается дольше, поскольку вся рама идёт в разборе. Теоретически, это может привести к проблемам при печати. Прошлый опыт с аналогичным устройством говорит сам за себя.

Субъективно, базовая прошивка Magic поинтереснее, как и стабильность печати.

Тем не менее, для старта в 3D-печати подойдёт любой быстрособираемый принтер на металлической раме и более-менее стандартными «мозгами».

Желательно если у него будет подвижный стол с автоподогревом, датчик смены филамента и концевой выключатель для определения уровня.

Так что стоимость входа в новую профессию оказывается куда ниже, чем может показаться. А между тем, за ней будущее: конструктивно ЧПУ-станки и профессиональные устройства для 3D-печати отличаются незначительно.

P.S. Среди наших читателей есть те, кто использует 3D-печать на работе или в виде хобби?

(
17 голосов, общий рейтинг: 4.41 из 5)

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]