Юный техник — для умелых рук 1981-10, страница 11

На электродвигателе Орнитоптер — это воздушное судно тяжелее воздуха, которое поддерживается в полете за счет реакций воздуха с его плоскостями, которым придаётся маховое движение.
Орнитоптером интересовались еще в древности, ведь именно так летают птицы.

Есть даже чертежи орнитоптера сделанные Леонардо ДеВинчи.

Для изготовления самодельного махолета-орнитоптера своими руками потребуются следующие расходные материалы:

  • Деревянные рейки
  • Пакет
  • Резинки банковские
  • Нитки
  • Клей моментальный и резиновый
  • Скрепки или кусочки стальной проволоки

На картинке внизу вы можете увидеть чертежи для изготовления орнитоптера своими руками.

Для изготовления лучше использовать липу или бальсу, можно применить карбоновые трубки или, как делают наши китайские товарищи – пластиковые прутки. Впрчем, можно выстругать и ил любого дерева – березы, липы и тд.

Соединение реек рамы производится по типу шип-паз и обматывается нитками с пропиткой клеем.

Передние кромки крыльев тоже приматываются к рычагам нитками, но перед этим в них делаются отверстие через которое пропускается шип рычага.

Подшипник вала резиномотора и рычагов можно сделать из изоляции от провода, можно также из частей стержня от ручки, они также приматываются нитками и нитки пропитываются клеем. Из проволоки выгибается коленвал подобный тому, что на рисунке, далее на него одевается бусина и он вставляется в подшипник, после чего выгибается крючок (см. рисунок). Выгибаются рычаги и после того как они вставятся концы их загибают.

Хвост-стабилизатор скрепляется из реек тем же способом что и рама, после чего к нему приматывается нитками проволока и изгибается как на фото.

В раме орнитоптера делается надрез в который вставляется проволока, после чего обматывается нитками и проклеевается.

Дальше изготавливаются шатуны, их делаем бамбуковые, просто от него удобно отколоть тонкие палочки, на концы их надеваем трубочки из изоляции проводов, в трубочках прожигаем отверстия, нагреваем проволоку над свечкой и быстро ей протыкаем трубку. Трубочки делаем подлиннее с того конца где вставляется палочка, это вам понадобится для регулировки.

Натягиваем резинки две меж крючками и закручиваем резиномотор, но не сильно, и отпускаем, должны начать двигаться крылья, если их ход не одинаков, то подогните передний кривошип.

Дальше смазываем резиновым клеем центральную нервюру и рейки кромок, накладываем на пленку наш летательный аппарат и расправляем ее, чтоб пленка провисала, но не сильно, стараемся делать одинаково с обеих сторон иначе он будет летать кругами.

При использовании резинового клея желательно подкрепить все небольшими полосками скотча.

Также следим за одинаковостью крыльев.

Дальше обклеиваем стабилизатор, желательно более натянуто.

Обязательно даем просохнуть клею, а потом запускаем!

Если вам не совсем понятна постройка, посмотрите видео ниже.

Орнитоптер своими руками

Орнитоптером интересовались еще в древности, ведь именно так летают птицы.
Есть даже чертежи орнитоптера сделанные Леонардо ДеВинчи.

Для изготовления самодельного махолета-орнитоптера своими руками потребуются следующие расходные материалы:

На картинке внизу вы можете увидеть чертежи для изготовления орнитоптера своими руками.

Для изготовления лучше использовать липу или бальсу, можно применить карбоновые трубки или, как делают наши китайские товарищи – пластиковые прутки. Впрчем, можно выстругать и ил любого дерева – березы, липы и тд.

Соединение реек рамы производится по типу шип-паз и обматывается нитками с пропиткой клеем.

Передние кромки крыльев тоже приматываются к рычагам нитками, но перед этим в них делаются отверстие через которое пропускается шип рычага.

Подшипник вала резиномотора и рычагов можно сделать из изоляции от провода, можно также из частей стержня от ручки, они также приматываются нитками и нитки пропитываются клеем. Из проволоки выгибается коленвал подобный тому, что на рисунке, далее на него одевается бусина и он вставляется в подшипник, после чего выгибается крючок (см. рисунок). Выгибаются рычаги и после того как они вставятся концы их загибают.

Хвост-стабилизатор скрепляется из реек тем же способом что и рама, после чего к нему приматывается нитками проволока и изгибается как на фото.

В раме орнитоптера делается надрез в который вставляется проволока, после чего обматывается нитками и проклеевается.

Дальше изготавливаются шатуны, их делаем бамбуковые, просто от него удобно отколоть тонкие палочки, на концы их надеваем трубочки из изоляции проводов, в трубочках прожигаем отверстия, нагреваем проволоку над свечкой и быстро ей протыкаем трубку. Трубочки делаем подлиннее с того конца где вставляется палочка, это вам понадобится для регулировки.

Натягиваем резинки две меж крючками и закручиваем резиномотор, но не сильно, и отпускаем, должны начать двигаться крылья, если их ход не одинаков, то подогните передний кривошип.

Дальше смазываем резиновым клеем центральную нервюру и рейки кромок, накладываем на пленку наш летательный аппарат и расправляем ее, чтоб пленка провисала, но не сильно, стараемся делать одинаково с обеих сторон иначе он будет летать кругами.

При использовании резинового клея желательно подкрепить все небольшими полосками скотча.

Также следим за одинаковостью крыльев.

Дальше обклеиваем стабилизатор, желательно более натянуто.

Обязательно даем просохнуть клею, а потом запускаем!

Если вам не совсем понятна постройка, посмотрите видео ниже.

От самолета до вертолета

Впрочем, у мечты о маховом полете есть и практическая сторона. Аэродинамическое качество — отношение подъемной силы к лобовому сопротивлению, которое определяет эффективность полета — у самолетов исключительно высоко. Но самолеты требуют дорогих и сложных аэродромов, больших взлетно-посадочных полос. Вертолеты в этом смысле удобнее, они взлетают и садятся вертикально, не требуя для этого какой-либо инфраструктуры. Они намного маневреннее и даже способны зависать неподвижно. Но аэродинамическое качество вертолетов невысоко, и час их полетного времени стоит совсем недешево.

Попыток скрестить одно с другим делается немало — у винтокрылых автожиров и конвертопланов есть свои поклонники. Для решения некоторых узких задач эти летательные аппараты могут быть даже незаменимы. Но все-таки такие гибриды оказываются не слишком удачными: известна шутка о том, что они соединили не столько достоинства, сколько ключевые недостатки и самолетов, и вертолетов. Но вот махолеты могут оказаться подходящим решением. Теоретически, они сумеют взлетать с места, будут маневренны вплоть до способности зависать в воздухе и смогут демонстрировать почти самолетное аэродинамическое качество.

Но первые неловкие воздухоплаватели задумывались, конечно, не о самолетах, которых еще вовсе не было, а о птицах. Казалось, что достаточно научиться отталкиваться от воздуха крыльями — и человек полетит. С такими взглядами, конечно, никто из них так и не смог оторваться от земли. Крылатые механические приспособления в лучшем случае позволяли неловко планировать, как это проделал легендарный монах-бенедиктинец Эйлмер, который около тысячи лет назад сиганул с башни Малмсберийского аббатства в Англии, получив тяжелые травмы.

Как настроить орнитоптер

• Если ваша птица пикирует загните вверх хвост, если кабрирует (задирает нос и падает), то наоборот опустите. Также изменением длины шатунов добиваемся большей стабильности и тяги при полете.

• Если все собрано правильно эта модель набирает высоту прямолинейно, после чего медленно помахивая крыльями планирует, дальше садится чуть поджав крылья. Комнатная моделька больше похожа на стрекозу при наборе высоты, частота взмахов достигает 20Гц. При сборке большей модели время полета, высота и зрелищность полета увеличиваются, падает частота взмахов, но нужно более мощную и длинную резинку

Однако полеты на резиномоторе не очень увлекательны. Гораздо интереснее – радиоуправляемый орнитоптер.

Как cделать орнитоптер своими руками

Эта инструкция — история о том, как я сделал прототип орнитоптера.

Для тех, кто не знает, орнитоптер — это механизм, который летает за счёт взмахов крыльями, как настоящая птица. Идея состояла в том, чтобы создать орнитоптер с нуля, управлять им дистанционно и, конечно, заставить его летать.

От птицы до насекомого

Причина многочисленных неудач понятна: саму сущность полета в те годы представляли достаточно смутно. Подъемную силу птицам дает не опора на воздух, а особый контур профиля крыла. Разделяя набегающий поток надвое, он заставляет воздух над верхней кромкой двигаться быстрее, чем над нижней. По закону Бернулли, давление будет выше в области с более медленным потоком. Возникающая разница между давлением под крылом и над ним создает подъемную силу. Но стоит начать махать крыльями — и эта ясная картина полностью меняется.

Известная поговорка гласит, что «по законам аэродинамики шмели вообще не могут летать». В принципе, это справедливо: с точки зрения классической аэродинамики насекомые и их крылья — это нечто несусветное. Даже в теории они неспособны создать подъемную силу и тягу, необходимые для полета, — если только мы не перейдем от классической аэродинамики планера к новой, нестационарной. Здесь все иначе: турбулентные завихрения, с которыми конструкторы самолетов борются не покладая рук, становятся ключом к полету и шмеля, и его родственников.

Крупные птицы используют взмахи лишь изредка — например, когда необходимо затормозиться для посадки или взлететь. Эти взмахи плюс движения ног позволяют им получить направленную вперед тягу, для того чтобы в действие вступила подъемная сила крыла. Насекомые же машут крыльями постоянно, причем по особой траектории, скорее вперед-назад, чем вверх-вниз. В сочетании с гибкостью крыльев и достаточной частотой взмахов это создает у их передней кромки турбулентные завихрения, которые «сбрасываются» с края крыла в верхней и нижней точках. Они и создают достаточную для полета шмеля подъемную силу и тягу.

Меняя скорость первой и второй фаз движения, насекомое контролирует направление этих сил, маневрируя в воздухе. И даже щетинки, бугры и неровности на поверхности крыла — отличие от обтекаемого крыла самолета — работают на образование турбулентных вихрей.

Выбор начальных параметров размаха крыльев, веса и частоты взмахов.

С какой частотой птицы обычно машут крыльями?

Я искал в интернете существующие конструкции орнитоптеров и анализировал их размеры. Большинство орнитоптеров сделаны в строке определенного размера. Орнитоптеры Hobbie могут быть отсортированы по размаху крыльев (от 660 до 3000 мм) и весу в полете. Мой орнитоптер с размахом крыльев 1200-1400 мм будет где-то посередине этой шкалы, не большой, но и не маленький.

Зная приблизительную частоту взмахов (от 5 до 7 Гц), я могу разработать механизм взмахов.

В итоге для орнитоптера мною были выбранны следующие параметры:

Выбор Махательного Механизма

Махательный Механизм является наиболее важной частью орнитоптера. Он преобразует электроэнергию от батареи в махательное движение крыльев. Разработать и собрать такой механизм достаточно сложная задача,так как он должен выдерживать огромные усилия, которые меняют направление несколько раз в секунду, и в то же время быть чрезвычайно легким и долговечным.

Существует большое количество махательных механизмов. Вот самые используемые.

Кривошип (Staggered Crank)

Конструкция кривошипа является самой базовой среди махательных механизмов. Части ступенчатого вала находятся на необходимиом растоянии и под необходимым углом для достижения симметричного взмаха. Это часто используемая конструкция среди любителей, которые собирают орнитоптеров из подручных материалаов.

Кривошип с одной передачей (Single Gear Crank)

Несмотря на то что конструкция кривошипа с одной передачей выглядит простой, она сложнее, чем кажется. Центральная точка, где соединительный стержень и шарниры крыльев соединены друг с другом, должна расширяться и сжиматься при закрывании механизма. Сжатие и расширение с очень высокой частотой может привести к износу компонента.

Кривошип с дмумя передачами (Dual Gear Crank)

Эта конструкция имеет две шестерни, которые управляют петлями каждого крыла по отдельности. Существует несколько вариантов конструкции трансмиссии. Шестерня может приводить в движение обе вспомогательные передачи. Таким образом, вторичные шестерни будут вращаться в одном направлении друг с другом. В другой конструкции ведущая шестерня вращает вторичную шестерню, а эта вторичная шестерня вращает другую вторичную шестерню. Вторичные передачи будут вращаться против часовой стрелки друг к другу. Эта конструкция намного проще в реализации и уменьшает несоосность крыла.

Поперечный вал (Transverse Shaft)

Поперечная конструкция вала является еще одним вариантом кривошипно-шатунного механизма. Эта конструкция обеспечивает максимально симметричный взмах. Однако это самый тяжелый и сложный дизайн. Вращающиеся зубчатые колеса и крылья находятся не в одной плоскости, поэтому соединительный стержень должен вращаться. Стержень соединителя имеет шариковый подшипник внутри, и это добавляет вес только к самому компоненту. Количество зубчатых колес, используемых в этой конструкции, больше, чем в любой другой конструкции. Конструкция поперечного вала обычно используется для больших орнитоптеров, где вес можно преодолеть с помощью больших крыльев.

Я решил выбрать конструкцию с поперечным валом. Размер моего орнитоптера позволяет использовать дополнительную массу механизма. Кроме того, такую ​​конструкцию легко изготовить из листового материала, так как плоскости зубчатых колес параллельны плоскости корпуса.

Теоретическая реализация

Орнитоптер на мускульной тяге

Орнитоптер Эдварда Фроста из ивы, шёлка и перьев, 1902 год.

По различным данным средняя предельная мощность человека, которую он способен выработать за первые 10 секунд, равна 1,85 л. с., а при дальнейшей работе в течение 1—2 минут мощность падает до 0,5 л. с. Мощность, необходимая птице для полёта, составляет до 0,02 л. с. на килограмм веса. Таким образом, человек способен создать подъёмную силу в объёме (1,85 / 0,02) = 93 кг. Однако предельных показателей мощности могут достигнуть лишь спортсмены-тяжеловесы, вес которых превышает создаваемую подъёмную силу даже без учёта веса летательного аппарата. Теоретически, если бы человек, обладающий весом 75 кг, смог бы выработать предельную мощность, то он смог бы осуществить полёт на орнитоптере весом 15 кг за счет лишь мускульной тяги, однако такой полёт продолжался бы не более нескольких секунд.

Как вариант, рассматривались и идеи использования пружинных, резиновых, пневматических и других аккумуляторов для накопления энергии, вырабатываемой человеком в моменты наименьших нагрузок. Наилучших результатов можно было бы достичь путём зарядки аккумулятора ещё до начала полёта. Но в этом случае такое приспособление по сути становится обычным двигателем с малым КПД. Подобные аккумуляторы нашли своё применение в небольших моделях орнитоптеров. Например, в одной из первых свободнолетающих моделей беспилотных орнитоптеров, созданной Альфонсом Пено в 1872 году, в качестве двигателя используется закручиваемая резина.

Планёр-орнитоптер

В связи со сложностью реализации пилотируемого безмоторного орнитоптера как самодостаточного летательного аппарата, возникла идея объединения орнитоптера с планёром. Суть заключается в том, что аппарат поднимается в воздух с посторонней помощью (например, буксировкой, с помощью лебедки), а механизм пропеллирования (взмахов крыльями) используется для последующего поддержания планёра на постоянной высоте при свободном полёте. Такие аппараты не могут считаться «настоящими» орнитоптерами, поскольку не способны самостоятельно оторваться от земли. Формула вычисления мощности, необходимой для поддержания планёра в воздухе, выглядит следующим образом:

N = G ⋅ w 75 {\displaystyle N={\frac {G\cdot w}{75}}} , где

  • G {\displaystyle G} — масса летательного аппарата вместе с пилотом, кг;
  • w {\displaystyle w} — скорость снижения аппарата, м/сек.
Информация в этом разделе устарела. Вы можете помочь проекту, обновив его и убрав после этого данный шаблон.

Если принять скорость снижения равной 0,45 м/сек, а затрачиваемую мощность — 0,6 л. с. (даже при условии 100 % КПД), то вес такого аппарата вместе с пилотом не должен превышать 100 кг. При этом человек не сможет долго поддерживать полёт, поскольку ему необходима энергия ещё и для того, чтобы управлять самим планёром.

Моторный орнитоптер

Информация в этом разделе устарела. Вы можете помочь проекту, обновив его и убрав после этого данный шаблон.

Постройка пилотируемого моторного орнитоптера должна стать промежуточным шагом на пути к орнитоптеру на мускульной тяге, поскольку эта задача решается в некотором роде проще — конструкторы избавлены от трудноразрешимой проблемы недостатка мощности человека. Основная проблема при постройке моторного орнитоптера сводится к выбору используемого двигателя.

Исследование полёта птиц показало, что с увеличением размеров птицы количество взмахов крыльями уменьшается. Приблизительное число взмахов для пилотируемого орнитоптера будет составлять примерно 50 взмахов в минуту. В связи с необходимостью трансформации вращательного движения в поступательное и редуцирования высоких оборотов современные двигатели внутреннего сгорания не самым лучшим образом подходят для решения этой задачи. Если даже «избавить» двигатель внутреннего сгорания от коленчатого вала, сделать его тихоходным и передавать поступательное движение поршней непосредственно на рычаги крыльев, то появляется проблема возникающих инерционных сил — при попытке передачи работы расширения газа при взрыве за короткий промежуток времени для движения сравнительно больших массивных крыльев.

В то же время, например, паровой двигатель, позволяющий регулировать скорость и плавность движения поршней, подошел бы гораздо лучше для передачи энергии на машущие крылья. Сама задача постройки орнитоптера в этом случае сводится к конструированию двигателя и агрегатов к нему (котёл с топкой, конденсатор и т. д.) в соответствии с аэродинамикой и кинематикой летательного аппарата.

Ортоптер

Сама идея орнитоптера — птицекрылого летательного аппарата — подразумевает подражание природным прототипам, птицам и насекомым, как в форме крыльев, так и в движениях ими.

Ортоптер «Grey Goose» 1927.

Однако некоторые изобретатели в попытках создать пилотируемый аппарат на мускульной тяге, приходили к довольно замысловатым решениям, как, например, крылья-жалюзи, пытаясь превзойти природное решение техническим подходом.

Один из наиболее распространенных типов нептицеподобных машущих аппаратов — ортоптер (англ. orthopter, от др.-греч. ορθός — прямой и πτερόν — крыло; „прямокрылый“) — летательный аппарат, использующий для получения подъёмной силы прямой «удар» плоскостью крыла при взмахе вниз.

Чертежи орнитоптера

Приступаем к постройке, будем ориентироваться на чужой опыт.

Постройка очень проста и не требует каких либо дефицитных матриалов. С изготвлением махолета может справиться практически любой человек.

Для данной самоделки автору потребовались такие материалы: деревянные шпажки, скрепки канцелярские большие и поменьше, рукав для запекания, супер клей.

Первым делом автор, из шпажек подготовил отрезки нужных размеров.

Затем с помощью ножа разделил вдоль шпажку длинной 22 см на две одинаковые половинки. Из них автор сделает крылья.

Затем он взял палочку 13 см и срезал один край как показано на фото ниже.

Палочку 6 см тоже раздели на две одинаковые части.

Вторая палочка 22 см будет основой, на ней автор сделал отметку 12 см и в этом месте приклеил одну половинку 6 см палочки под углом 90 градусов.

На этой маленькой палочке сделал отметку 5 см.

Далее он взял палочку 13 см и приклеил ее как на фото.

Затем он перевернул основу и приклеил вторую половинку 6 см палочки.

Далее автор из бумаги вырезал полоски и намотал на скрепку.

Приклеил второй край полоски.

Снял их со скрепки получились вот такие втулки, они будут нужны для движения крыльев.

Теперь автор взял маленькие скрепки 2 шт. выровняв их загнул таким образом.

Затем от ровного края скрепки отмерял 1 см и загнул на 90 градусов.

Далее от этого изгиба отмерял 2 см и загнул на 90 градусов в противоположную сторону.

Затем отмерял еще 2 см и лишнее отрезал. Со второй скрепкой он проделал такую же операцию.

Далее автор взял ранее подготовленные половинки палочек для крыльев. И приклеил к ним скрепки.

Для большей прочности он обмотал места склеивания ниткой в два слоя и пропитал ее клеем.

Орнитоптер на резиномоторе (10 шт.)

  • Цена: $3,41
  • Перейти в магазин

Всем привет! В рамках программы по приобщению детей к науке и технике (взрослых тоже не забудем), были куплены 10 наборов орнитоптеров. Они продаются также и по одной штуке: так, сначала был заказан на али только один орнитоптер с ценой $0.72 (искать «ornithopter»), спустя пару недель был замечен недорогой набор из 10 шт., и куплен.

100% brand new and high quality Colour:the Colour is Sent by Random Size:32CM*41CM Note: Due to the difference between different monitors, the picture may not reflect the actual color of the item. Thank you!

Package includes: 10 Pieces

Посылка пришла на удивление быстро — за 18 дней — черный пакет внутри которого, в двухслойной «пупырке», завернут пакет с крыльями в сборе, и пакет с хвостами, резинками и бамбуковыми рейками.

Собрать орнитоптер не составит труда. Для полета нужно соединить в единое целое хвост и крылья с помощью бамбуковой рейки, и натянуть пару-тройку резиновых колец из комплекта. Получается эдакая «птичка» которая неплохо планирует.

К слову, у пары крыльев бамбуковые несущие, несмотря на упаковку, оказались сломаны. С помощью клея и тонких бамбуковых зубочисток, думаю будет несложно починить.

Полет длится недолго — до 10 секунд раскручивается резиновый жгут. Его задача поднять «птичку повыше», дальше, в зависимости от положения крыльев она планирует. К сожалению видео пока не получилось снять, в квартире места мало, а на улице ветер. Пробные запуски в квартире заканчиваются ударом об стену.

В планах взять рейку и резину подлиннее, чтоб увеличить время полета.

Размеры: Размах крыла — 41 см. Длина бамбуковой рейки 14 см. Длина хвоста — 16 см. Диаметр резиновых колец — 4.5 см.

Считаю что данная игрушка будет интересным развлечением для детей на свежем воздухе.

Как настроить орнитоптер

• Если ваша птица пикирует загните вверх хвост, если кабрирует (задирает нос и падает), то наоборот опустите. Также изменением длины шатунов добиваемся большей стабильности и тяги при полете.

• Если все собрано правильно эта модель набирает высоту прямолинейно, после чего медленно помахивая крыльями планирует, дальше садится чуть поджав крылья. Комнатная моделька больше похожа на стрекозу при наборе высоты, частота взмахов достигает 20Гц. При сборке большей модели время полета, высота и зрелищность полета увеличиваются, падает частота взмахов, но нужно более мощную и длинную резинку

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]