Определение и техническое описание.
* — автоматический перевод части книги.
Это curiolls факт, что вы не найдете термин «турбина» в большинстве книг физики.
Реактивная струя турбины производит осевое давление, ускоряя массу воздуха. Когда массы воздуха ускорены в потоке они создают тягу. Силы измеряются в Ньютонах, а не в килограммах и граммах! Сила 1 Ньютона (обозначается буквой N) действуeт когда масса 1 кг ускоряется или замедляется на 1 м\с. Изменение скорости за промежуток времени определена как ускорение и измеряется в м\с.
В энциклопедии в разделе «турбина» написано: «МОЩНЫЙ ДВИГАТЕЛЬ, в котором энергия движущейся среды (воды, пара, газа) преобразуется в полезную энергию ещё одно название — турбореактивный двигатель. Предшественниками были ветряные мельницы и водяные колеса, Специалист технических книг на эту тему объяснить различными турпобеги в некоторых деталях в соответствии с основнымзаголовком струя реактивного двигателя.
В Dubbel по инжинирингу Вы найдёте определение: «газовая турбина это машина, которая использует тепло что бы передать механическую энергию (мощность на валу) или тягу (например, авиационные двигатели) «, соответственно, термин газовые турбины является общим термином для всех типов Turbo Jet двигателей. Реактивные турбины, а также турбовинтовые моторы. Все они считаются «газовыми турбинами; из авиамодельных систем, такие как JPX. FD. микро-турбины. Turbomin и Pegasus, а также KJ-66, .1-66 и TK- 50 двигателей с турбонаддувом feawred в этой книге, и включая ING любой такой тип двигателя, который в настоящее время либо есть, либо еще не придумали. Они все «газовые турбины» для создания тяги!
В самом деле, альтернативные и более подходящее название для таких устройств авиамодельных двигателей с турбонадувом струи воздуха. Я предпочитаю термин который часто используется специалистами: «реактивные турбины, некоторые люди называют их реактивные двигатели. Как вы можете видеть, мы уже имеем более чем достаточно определения в нашем распоряжении. Существует не нужно, чтобы придумать с любыми новыми определениями. К сожалению. технические эксперты не всегда говорят на языке, который логически правильный и ясный. Конечно, чтобы помочь пониманию читателей, которые не имеют специальных знаний, это необходимо всегда указывать, что именно имеется в виду под словом wrbines. Это чертежи турбо-реактивного двигателя.
Не большой пример, двигатель втягивает воздух со скоростью 0.25 кг/секунда и ускоряет его в то же самое время до скорости 400 м\с статическое осевое давление — 100 N *
Купить ТРД можно по ссылке ЗДЕСЬ. Доставка 7 — 15 дней.
Чертежи авиамодельного турбореактивного двигателя.
То, как я спроектировал и построил самодельный реактивный двигатель — не лучший способ сделать это. Я могу представить миллион способов и схем, как создать лучшую модель, более реалистичную, более надежную и более простую в изготовлении. Но сейчас я собрал такую.
Основные части реактивного модельного двигателя:
- Двигатель постоянного тока достаточно сильный и минимум на 12 вольт
- Источник постоянного тока не менее 12 вольт (в зависимости от того, какой у вас двигатель постоянного тока).
- Реостат, такой же какой продаётся для настройки яркости лампочек.
- Коробка передач с маховиком, встречается во многих автомобильных игрушках. Лучше всего, если корпус редуктора сделан из металла, потому что пластик может плавиться на таких высоких скоростях.
- Металлический лист, который можно разрезать, чтобы сделать лопасти вентилятора.
- Амперметр или вольтметр.
- Потенциометр примерно на 50К.
- Катушка электромагнита из соленоида или любого другого источника.
- 4 диода.
- 2 или 4 постоянных магнита.
- Картон, чтобы собрать корпус, похожий на корпус реактивного двигателя.
- Наполнитель кузовов для авто, для создания экстерьера.
- Жесткий провод, чтобы поддерживать все. Обычно я использую провода из дешевых вешалок. Они достаточно сильны и достаточно гибки, чтобы придать им нужную форму.
- Клей. Для большинства деталей я предпочитаю горячий клей, но сейчас подойдёт практически любой клей.
- Белая, серебряная и черная краска.
Необходимые инструменты
Чтобы успешно собрать двигатель своими руками необходимо тщательно подготовиться к этому. Прежде всего, нужно подготовить набор ключей различных размеров. Также может понадобиться универсальный газовый ключ. Кроме того, необходим специальный инструмент для запрессовки поршневых пальцев и динамометрический ключ, чтобы правильно рассчитать момент затяжки болтов. Лучше всего подойдут для сборки мотора накидные ключи и торцовые головки.
Во многих моделях ДВС иностранного производства есть специальные болты. Чтобы открутить их понадобится специальные ключи, которые можно найти в магазинах, занимающихся продажами автозапчастей.
Для извлечения больших и тяжелых двигателей из кузова автомобиля в гараже вам может понадобиться лом, чтобы поддеть мотор снизу и отсоединить от него коробку передач и сцепление. Чтобы защитить лакокрасочное покрытие транспорта от возможных механических повреждений в процессе ремонта силового агрегата, накройте крылья и радиатор автомобиля плотной тканью.
Чтобы снять и установить двигатель обычно используется подъемный кран, а при его отсутствии – канат или плотный и крепкий трос.
Когда весь необходимый инструмент подготовлен к предстоящей работе, можно узнать, как собрать двигатель скутера или любого другого транспортного средства.
Обкатка автомобиля
После капремонта мотора, следует его правильно обкатать. В противном случае могут возникнуть новые неисправности, а ресурсы не выработаются даже на 50%. Наиболее простой схемой правильной обкатки является на холостом ходу. После запуска двигатель прогревается до 10 минут на холостом ходу, а после выключается до остывания. Повторить несколько раз. Подобное действие позволяет выявить неисправности, или недопустимые протекания.
Следующим способом является работа на холостом ходу около десяти часов. При этом следует иногда проверять состояние автомобиля, каждый час останавливая двигатель для передышки. Температура ОЖ не должна превышать +80°С.
При обкатке новые запчасти притираются, и слишком большой пробег сразу точно навредит. Средней нормой является две три тысячи километров.
Важно! Избегать экстремальной езды, и превышения скорости более чем 60 км/ч.
Что такое капремонт и зачем он нужен
Капитальный ремонт двигателя ВАЗ – достаточно трудоемкая работа, требующая знания устройства и принципа работы агрегата.
Данный процесс займет немало времени. Придется снимать мотор с автомобиля и осуществлять его полную разборку. Все снятые запчасти проверяются на пригодность к дальнейшей эксплуатации, при необходимости меняются на новые. Особое внимание уделяют коленчатому валу: он реставрируется и приводится в идеальное состояние. Также проверяются имеющиеся системы: охлаждения, смазки, подачи топлива, осуществляется починка кривошипно-шатунного механизма.
Во время ремонтных работ детали и узлы ДВС доводятся до идеального состояния. После сборки агрегата его состояние и работоспособность должно быть идентичны новому двигателю, только что выпущенному с конвейера. Капиталка необходима, если мотор полностью или частично выработал свой ресурс, появились соответствующие признаки, свидетельствующие об этом. Не обращать внимания на них нельзя. При дальнейшей эксплуатации автомобиля двигатель может полностью выйти из строя и его нельзя будет восстановить. Останется один вариант – приобретение новой детали. Естественно, что приобретение запчастей обходится дороже, чем их починка.
Срок службы движка до капремонта можно продлить, если при эксплуатации машины придерживаться простых правил.
- Следить за уровнем масла и регулярно менять его.
- Следить за уровнем охлаждающей жидкости, не допуская перегрева машины.
- Заливать качественное топливо, рекомендуемое заводом-изготовителем.
- Разумно эксплуатировать машину, не допуская перегрузки.
- Ограничить до минимума время работы автомобиля на холостых оборотах.
- Отказаться от экстремальной езды, требующей повышенных оборотов. Не допускать, чтобы стрелка тахометра заходила в красную зону.
Применение
Нашел себе применение турбовальный двигатель и на земле. Правильнее даже говорить, что именно на земле он изначально и использовался, и только после появления авиации, как таковой, «переселился» на небо. Его можно встретить и на транспорте, и на различных магистральных станциях, где он обычно используется, как альтернатива дизельного двигателя. В сравнении с дизелем ТВД более легкий по весу, менее шумный и более мощный, если брать двигатели одного размера.
В промышленности и народном хозяйства
ТВаД успешно используется в качестве нагнетателя природного газа на газоперекачивающих станциях. Его нередко можно увидеть на крупных газовых магистралях. Одна из последних разработок газовая турбина T16, мощностью 16 МВт. Короткое видео с применением турбовального двигателя в электроэнергетики.
Основные показатели:
- 16,5 МВт — мощность на валу.
- 37% — КПД, механический привод.
- 36% — КПД, электрический (простой цикл).
- 80% — КПД, комбинированное производство электроэнергии и тепла
- 200 000 часов — полный жизненный цикл
- выбросы NOx — не более 25 ppm.
Турбовальные двигатели используются в мобильных электростанциях для привода генератора. Электростанции с данным двигателем занимают меньший объем, аналогичной электростанции с традиционными двигателями.
В транспортной сфере
Несмотря на то, что в большинстве случаев турбовальные двигатели описываются, как силовые установки вертолетов, их применение не ограничено только ими. Частенько ТВаД играет роль не основного движителя, а вспомогательной установки. Такими установками обычно оснащаются самолеты, а используются они для питания энергией основных систем судна при его наземном обслуживании. То есть, когда самолет находится на земле, не обязательно запускать его основные моторы для получения электричества или создания давления в гидросистемах, для этого достаточно запуска такой небольшой установки. Также ТВаД используется в качестве пускового агрегата, который проворачивает ротор турбины при запуске. В этом случае он имеет название турбостартер.
Вид железнодорожного транспорта, на который устанавливается ТВаД, носит название газотурбовоз. Принцип его работы заключается в том, что турбовальный двигатель вращает вал генератора, вырабатывающего электрический ток. Ток поступает на электромоторы, которые, по сути, и являются основной силовой установкой. История газотурбовозов началась в 60-е годы, когда были сконструированы первые опытные образцы, правда, потом они уступили место более известным сейчас электровозам. Вместе с тем с 2007 года возобновились работы по созданию газотурбовозов, и даже был создан пробный экземпляр, работающий на сжиженном газе. Его испытания прошли успешно, так что в скором будущем, возможно, он будет выпускаться серийно.
Не обошли стороной ТВаД и создатели военной наземной техники. Некоторые танки, в том числе и отечественный Т-80 и американский М1 Abrams, оснащены ТВаД. Короткое видео разработки, внедрения и применения турбовального двигателя на танке.
Турбовальные двигатели также используются и на водном транспорте, называемом газотурбоходами. К ним относятся суда на воздушной подушке или на подводных крыльях. Наиболее известным отечественным газотурбоходом является военное судно «Зубр» — наиболее крупный десантный корабль на воздушной подушке. Этот гигант известен далеко за пределами России и является мировым рекордсменом среди суден на воздушной подушке по своим габаритам. А вот с отечественными пассажирскими газотурбоходами как-то не сложилось. Судно «Циклон», сконструированное в 80-хх годах, не пережило перестройки и со временем забылось, а новые пассажирские суда, оснащенные ТВаД пока не появились.
Танк Т-80 с газотурбинным двигателем Десантное судно «Зубр»
Как сделать реактивный двигатель своими руками
Самый простым реактивным двигателем является бесклапанный пульсирующий агрегат. После его изобретения стало очевидно, что он может двигать ракету даже в безвоздушном пространстве. Из-за того, что повсеместно стали использовать турбореактивные моторы, разработку рассматриваемого вида движителей приостановили. Но многие любители продолжают интересоваться, изучать и даже самостоятельно собирать агрегат. Попробуем сделать реактивный двигатель своими руками.
Мотор по патенту Локведа
Устройство можно соорудить любого размера, если строго соблюдать необходимые пропорции. Реактивный двигатель, своими руками сделанный, не будет иметь движущихся частей. Он способен функционировать на любом виде топлива, если будет предусмотрено приспособление для его испарения до входа в камеру сгорания. Однако старт производят на газе, так как этот вид топлива намного удобнее других. Соорудить конструкцию просто, да и денег уйдет не так уж много. Но надо приготовиться к тому, что работать будет с большим шумом реактивный двигатель.
Своими руками устанавливается и испаряющий распылитель для жидкого топлива. Его помещают на конец металлической трубы, через которую пропан поступает в камеру сгорания. Однако если планируется применять только газ, то это приспособление устанавливать необязательно. Можно пропан просто запускать через трубку 4 мм диаметром. Ее прикрепляют к камере сгорания при помощи фитинга на десять миллиметров. Иногда предусматривают также разные трубки для пропана, керосина и дизельного топлива.
На старте газ поступает в камеру сгорания, и при возникновении первой искры двигатель запускается. Баллоны сегодня приобрести нетрудно. Удобным является, например, имеющий одиннадцать килограмм топлива. Если предполагается большой расход, то редуктор не обеспечит необходимым потоком. Поэтому в таких случаях устанавливают просто игольчатый клапан. Баллон при этом нельзя опустошать до конца. Тогда в трубке не произойдет возгорания.
It’s alive!
Покопавшись в интернете, я примерно понял в чем была проблема первого движка. Из-за трамбовки топливо распределялось неравномерно, в нем образовывались полости, и оно было неоднородно из-за чего процесс горения был очень вялым и вместо ракеты получилась хорошая дымовая шашка. Решение проблемы было простое — забить в трубу сваренное карамельное топливо. В качестве корпуса взял металлическую штангу для ванной и решил поэкспериментировать с пропорциями топлива и с добавкой оксида железа 3 (то есть обычной ржавчины), потому что он должен был увеличить скорость горения.
Примеры чистого карамельного топлива и с добавлением ржавчины. Источник
Движки я сделал поменьше, так как не видел смысла в изготовлении полноразмерного варианта, так же, как и не видел смысла в заглушках и сопле, на скорость горения топлива повлиять они не должны были, потому что все испытуемые были в равных условиях окружающей среды.
Прежде чем варить топливо, поговорим о технике безопасности, ведь карамелька легко воспламеняется и горит очень резво. Варить топливо нужно только на электрической плите, на газовой плите или любом другом источнике открытого огня готовить топливо нельзя. Кстати, в недавнем взрыве склада пиротехники в Бейруте по официальным данным воспламенилась именно селитра, так что будьте крайне осторожны при варке.
Топливо варил на электрической плите в блиннице
до цвета и консистенции сгущенки. Блинница тем хороша, что в ней все ингредиенты равномерно нагреваются и не пригорают.
В итоге у меня получилось несколько подопытных:
- Движки с перемолотым в ступке и сваренным карамельным топливом
- Движки с измельченным в кофемолке и сваренным карамельным топливом
- Движки с измельченным в кофемолке и сваренным карамельным топливом с добавлением 1% оксида железа 3
Теперь необходимо было провести испытания движков. В спойлерах написано процентное соотношение ингредиентов в формате Селитра/Сахар/Ржавчина(если есть), а внутри прикреплены гифки самих прожигов.
Выводы:
- В этот раз все движки загорелись и горели они очень хорошо, что конечно же порадовало
- Ржавчина увеличивает скорость горения. Для сравнения двигатель 55/45 горел примерно 35 сек, а 54/45/1 уже 26 сек;
- Измельчение в кофемолке существенно не прибавило скорости горения
- Даже с заменой сахара в двигателях оставалось много не сгоревшего вещества (черное и белое вещество в “бочонках” на последней фотографии), состав которого был не известен
В общем, топливо загорелось, осталось решить, делать ли на нем ракету, или искать другое решение.
Устройство реактивного двигателя
Реактивный двигатель был изобретен Гансом фон Охайном (Dr. Hans von Ohain), выдающимся немецким инженером-конструкторм и Фрэнком Уиттлом (Sir Frank Whittle). Первый патент на работающий газотурбинный двигатель, был получен в 1930 году Фрэнк Уиттлом. Однако первую рабочую модель собрал именно Охайн.
2 августа 1939 года в небо поднялся первый реактивный самолет – He 178 (Хейнкель 178), снаряженный двигателем HeS 3, разработанный Охайном.
Устройство реактивного двигателя достаточно просто и одновременно крайне сложно. Просто по принципу действия: забортный воздух (в ракетных двигателях – жидкий кислород) засасывается в турбину, там смешивается с топливом и сгорая, в конце турбины образует т.н. “рабочее тело” (реактивная струя), которое и двигает машину.
Так все просто, но на деле – это целая область науки, ибо в таких двигателях рабочая температура достигает тысяч градусов по Цельсию. Одна из самых главных проблем турбореактивного двигателестроения – создание не плавящихся деталей, из плавящихся металлов. Но для того, что бы понять проблемы конструкторов и изобретателей нужно сначала более детально изучить принципиальное устройство двигателя.
Устройство реактивного двигателя
основные детали реактивного двигателя
В начале турбины всегда стоит вентилятор, который засасывает воздух из внешней среды в турбины. Вентилятор обладает большой площадью и огромным количеством лопастей специальной формы, сделанных из титана. Основных задач две – первичный забор воздуха и охлаждение всего двигателя в целом, путем прокачивание воздуха между внешней оболочкой двигателя и внутренними деталями. Это охлаждает камеры смешивания и сгорания и не дает им разрушится.
Сразу за вентилятором стоит мощный компрессор, который нагнетает воздух под большим давлением в камеру сгорания.
Камера сгорания выполняет еще и роль карбюратора, смешивая топливо с воздухом. После образования топливо воздушной смеси она поджигается. В процессе возгорания происходит значительный разогрев смеси и окружающих деталей, а также объемное расширение. Фактически реактивный двигатель использует для движения управляемый взрыв.
Камера сгорания реактивного двигателя одна из самых горячих его частей – её необходимо постоянно интенсивное охлаждение. Но и этого недостаточно. Температура в ней достигает 2700 градусов, поэтому её часто делают из керамики.
После камеры сгорания горящая топливо-воздушная смесь направляется непосредственно в турбину.
Турбина состоит из сотен лопаток, на которые давит реактивный поток, приводя турбину во вращение. Турбина в свою очередь вращает вал, на котором “сидят” вентиллятор и компрессор. Таким образом система замыкается и требует лишь подвода топлива и воздуха для своего функционироваия.
После турбины поток направляется в сопло. Сопло реактивного двигателя – последняя, но далеко не по значению часть реактивного двигателя. Оно формирует непосредственно реактивную струю. В сопло направляется холодный воздух, нагнетаемый вентиллятором для охлаждения внутренних деталей двигателя. Этот поток ограничивает манжету сопла от сверхгорячего реактивного потока и ее дает ей расплавится.
Отклоняемый вектор тяги
Сопла у реактивных двигателей бывают самые разные. Самым передовым считает подвижное сопло, стоящее на двигателях с отклоняемым вектором тяги. Оно может сжиматься и расширятся, а также отклонятся на значительные углы, регулируя и направляя непосредственно реактивный поток. Это делает самолеты с двигателями с отклоняемым вектором тяги очень маневренными, т.к. маневрирование происходит не только благодаря механизмам крыла, но и непосредственно двигателем.
Сверхзвуковые ПВРД
Сверхзвуковые ПВРД рассчитаны на осуществление полетов в диапазоне скоростей 1 < M < 5.
Торможение газового сверхзвукового потока всегда выполняется разрывно, при этом образуется ударная волна, которая называется скачком уплотнения. На дистанции ударной волны процесс сжатия газа не является изоэнтропийным. Следовательно, наблюдаются потери механической энергии, уровень увеличения давления в нем меньший, нежели в изоэнтропийном процессе. Чем мощнее будет скачок уплотнения, тем больше изменится скорость потока на фронте, соответственно, больше потери давления, иногда достигающие 50%.
Для того чтобы минимизировать потери давления, организуется сжатие не в одном, а нескольких скачках уплотнения с меньшей интенсивностью. После каждого из таких скачков наблюдается снижение скорости потока, которая остается сверхзвуковой. Это достигается, если фронт скачков расположен под углом к направлению скорости потока. Параметры потока в интервалах между скачками остаются постоянными.
В последнем скачке скорость достигает дозвукового показателя, дальнейшие процессы торможения и сжатия воздуха происходят непрерывно в канале диффузора.
Если входное устройство мотора расположено в области невозмущенного потока (например, впереди летательного аппарата на носовом окончании или на достаточном отдалении от фюзеляжа на крыльевой консоли), оно выполняется асимметричным и комплектуется центральным телом – острым длинным «конусом», выходящим из обечайки. Центральное тело предназначено для создания во встречном воздушном потоке косых скачков уплотнения, которые обеспечивают сжатие и торможение воздуха до момента его поступления в специальный канал входного устройства. Представленные входные устройства получили название устройств конического течения, воздух внутри них циркулирует, образуя коническую форму.
Центральное коническое тело может быть оснащено механическим приводом, который позволяет ему двигаться вдоль оси двигателя и оптимизировать торможение потока воздуха на разных скоростях полета. Данные входные устройства называются регулируемыми.
При фиксации двигателя под крылом или снизу фюзеляжа, то есть в области аэродинамического влияния элементов конструкции самолета, используют входные устройства плоской формы двухмерного течения. Они не оснащаются центральным телом и имеют поперечное прямоугольное сечение. Их еще называют устройствами смешанного или внутреннего сжатия, поскольку внешнее сжатие здесь имеет место только при скачках уплотнения, образующихся у передней кромки крыла или носового окончания летательного аппарата. Входные регулируемые устройства прямоугольного сечения способны менять положение клиньев внутри канала.
В сверхзвуковом скоростном диапазоне ПВРД более эффективен, нежели в дозвуковом. К примеру, на скорости полета М=3 степень увеличения давления составляет 36,7, что приближается к показателю турбореактивных двигателей, а расчетный идеальный КПД достигает 64,3 %. На практике эти показатели меньшие, но на скоростях в диапазоне М=3-5 СПВРД по эффективности превосходят все существующие типы ВРД.
При температуре невозмущенного воздушного потока 273°K и скорости самолета М=5 температура рабочего заторможенного тела равна 1638°К, при скорости М=6 — 2238°К, а в реальном полете с учетом скачков уплотнения и действия силы трения становится еще выше.
Дальнейшее нагревание рабочего тела является проблематичным из-за термической неустойчивости конструкционных материалов, входящих в состав двигателя. Поэтому предельной для СПВРД считается скорость, равная М=5.
Начало
В гараже длиной 6 м делать катер более чем пятиметровой длины поначалу не решался: мало места. Однако старт был таким внезапным, что долго думать времени не было.
Болван собирались изготовить из бруска и ДВП. И я даже привёз материалы, но в самый последний момент сделали выбор в пользу гипсокартона. На пол в гараже постелили два листа ДСП, скрепили их между собой и из калиброванного соснового бруска 25 x 30 мм по данным проекта начали делать шпангоуты. Но не такие крепкие и надёжные, как в настоящей лодке: их задача — выдержать всего лишь вес гипсокартона.
Брусок запиливали под нужными углами и скрепляли косынками из фанеры,прикручивая саморезами. Прямо на ДСП расчертили расположение шпангоутов и прикрутили их в нужном порядке. Стрингеры сделали из длинных и узких полосок фанеры. Их функция была такая же, как и у шпангоутов,— держать вес гипсокартона. Для крепления везде использовали саморезы.
В результате получилась на удивление жёсткая система. А чтобы убедиться, что всё сделали правильно, открутили конструкцию от листов ДСП, вытащили на улицу и осмотрели с расстояния.
Система была очень лёгкой и напоминала лодку «Север 420», начерченную в векторной графике. Результат весьма порадовал. Каркас прикрепили на прежнее место. На всё это ушёл день или два.
Привёз несколько листов потолочного гипсокартона. Листы прикладывали к каркасу, отмечали карандашом и вырезали элементы будущего болвана. К каркасу крепили также саморезами.
Техника — молодёжи 1951-07, страница 39
аяется таким образом. В один на торцов рулончика пленки (1) вставляют гвовдь (6) толщиной 1—1,5 мм. Затем рулончик выеие с гвоздем туго обматывают плотной бумагой (2) с фольгой (7) (ог шоколада или конденсатора) и прочно обвязывают мокрой суровой ниткой. Теперь гвоздь можно вынуть, а в бумаге останется отверстие для сопла Второй конец двигателя стягивается ниткой еще туже и крепче, наглухо.
Чаще всего неудачи с работой двигателя происходят от недостаточно прочного и тугого связывания его глухого конца. Поработав 1—2 секунды, газы прорывают оболочку, просочившись через глухой конец.
Способы установки двигателя на разных моделях видны на рисунках.
Внутри модели укрепляется бумажная трубка, в которой и устанавливается сменный двигатель. Угол установки двнга-
ПРОСТЕЙШИЕ РЕАКТИВНЫЕ ДВИГАТЕЛИ ДЛЯ МОДЕЛЕЙ
На наших глазах сбываются вещие слова К. Э. Циолковского: «За эрой аэропланов винтовых должна последовать эра аэропланов реактивных». Естественно, что юные техники и прежде всего авиамоделисты стремятся воплотить в своих моделях реактивную технику.
На Центральной станции юных техников имени Н. М. Шверника разработан простейший реактивный двигатель, работающий на твердом топливе. Топливом этим является обычная, доступная каждому фотопленка или кинопленка.
При собственном весе в 12—15 г такой реактивный двигатель иа протяжении 8—10 секунд дает равномерную тягу в 50—70 г. Этой тяги вполне достаточно, чтобы поднять в воздух модель весом в несколько десятков граммов или заставить промчаться по асфальту реактивный автомобильчик на расстояние нескольких десятков метров. Наконец, этот же двигатель, поставленный на плавающую модель, обеспечивает ее стремительный бег по поверхности воды со скоростью до 3 м В секунду.
Процесс изготовления реактивного двигателя начинается с подбора необходимых материалов.
Очищать пленку от эмульсии не следует. Чистый целлулоид, смотанный в тугой рулон, внутри ракеты нередко гаснет, сгорев только наполовину.
Для изготовления двигателя (смотри рисунок) следует взять кусок кинопленки длиной не более 35 см и туго смотать ее в трубку (1).
Первый сгиб от края кинопленки делается шириной ие более 1 мм. После того как вся пленка смотана, кран ее при
клеивается клеем и получившийся рулон туго обматывается прочной ниткой. После высыхания клея нитку можно снять.
Рулой пленки из отрезка в 35 см должен иметь толщину в 11—12 мм.
Для оболочки двигателя нужны полоска бумаги (писчем) длиною в 40 см (2) и две деревянные бобышки (3 и 4). а одной из которых (4) сверлится (нлн прожигается проволокой) будущее сопло — отверстие шириной в 1—1,5 мм.
Сборка двигателя производится, как показано иа рисунке.
Рулон пленки с примыкающими к обоим его концам бобышками туго завертывается в полоску бумаги и поверх бобышек крепко обвязывается прочной (суровой) ниткой (5). Двигатель готов к действию.
Приводится в действие двигатель раскаленной проволочкой, которая вводится на 1—2 секунды черев сопло внутрь двигателя.
Возможна и другая конструкция такого двигателя — без деревянных бобышек. Этот двигатель изготов-
теля обычно нулевой по отношению к линии движения модели Особенно точно должен быть установлен двигатель иа летающих моделях.
Угол даже в +2° влечет резкий заход модели в мертвую петлю.
Можно изготовить двигатель из двух рулонов пленки, укладывая нх плотно один к другому. Внутренний диаметр сопла при этом должен быть 2—2,5 мм.
Такой двойной заряд работает 15—16 секунд. Сила тяги остается прежней.
Увеличивать размеры двигателя до трех рулонов пленки не рекомендуется, так как сопло будет засариваться золой сгоревших рулонов н двигатель будет взрываться.
Не рекомендуется увеличивать и толщину двигателя. Такой «толстый» двигатель может успешно работать лишь при широком сопле (5—6 мм и больше). Сила же тяги останется такой же, как у однорулонного, «тонкого» двигателя. Попытка сузить диаметр сопла приведет к разрыву двигателя.
Следующие правила безопасности обязательны для работы с двигателями на фото-кинопленке:
1 Отрезок пленки для реактивного двигателя не должен превышать 35 см длиною.
2. Пленку нужно смотать в очень тугой рулончик. Просвет в центральной части рулона не должен превышать 1—1,5 мм.
3. Клей ие должен просачиваться на торцовые концы рулона пленки.
4. Оболочку ракеты не следует делать hi дерева или металла. Она должна быть из бумаги (писчей) Hjfff из бумаги с прослойкой тонкой фольги.
Основной этап
Изготавливая реактивный пульсирующий двигатель дома, помните, что трубы фиксированного диаметра легко сформировать при помощи большего аналога. Вполне реально операцию провести руками за счет рычажного принципа, после чего края заготовки обработать киянкой, загибая их до нужной кондиции. Желательно, чтобы концы при стыковании образовывали плоскость, что улучшит размещение сварного шва. Листы в трубу согнуть сложнее, потребуется листогиб или вальцы. Этот профессиональный инструмент найдется далеко не у каждого. В качестве альтернативы допускается использование тисов.
Важный и кропотливый момент – сварка тонкого листа из металла. Здесь потребуются специальные навыки, особенно если в процессе применяется ручная дуговая сварка. Новичкам лучше не пытаться экспериментировать (малейшая передержка электрода в одной точке приводит к прожиганию дыры). Кроме того, в район шва могут попасть пузырьки, что впоследствии гарантирует течь. Лучше всего провести шлифовку шва до минимальной толщины, что позволит увидеть «брак» невооруженным глазом сразу. Конические сегменты сгибают вручную, обжимают узкий конец заготовки вокруг трубы малого диаметра, делая большее усилие, чем на широкую часть.
В следующих сериях
К сожалению, в рамках одной статьи невозможно описать все нюансы работы. Принято считать, что эти работы требуют профессиональной квалификации, однако при должном усердии все они доступны любителю. Нам, журналистам, самим было интересно освоить новые для себя рабочие специальности, и для этого мы читали учебники, советовались с профессионалами и совершали ошибки.
Корпус, который мы сварили, нам понравился. На него приятно смотреть, его приятно держать в руках. Так что искренне советуем и вам взяться за такое дело. В следующем номере журнала мы расскажем, как изготовить систему зажигания и запустить бесклапанный пульсирующий воздушно-реактивный двигатель.
Пульсирующий воздушно-реактивный двигатель (ПуВРД) – это одна из трех основных разновидностей воздушно-реактивных двигателей (ВРД), особенностью которой является пульсирующий режим работы. Пульсация создает характерный и очень громкий звук, по которому легко узнать эти моторы. В отличие от других типов силовых агрегатов ПуВРД имеет максимально упрощенную конструкцию и небольшой вес.
Минусы
Среди недостатков также немало пунктов, а именно:
- высокая степень шумности в рабочем состоянии;
- чрезмерный расход горючего;
- наличие остатков топлива после использования;
- повышенная уязвимость входного клапана;
- ограничение скоростного режима.
Невзирая на все минусы, ПВРД в своем сегменте остается весьма востребован. Подобный мотор незаменим для одноразовых запусков, особенно если нецелесообразно монтировать мощные и дорогие версии.