Фонарик ультрафиолетовый: пошаговые инструкции изготовления и полезные советы

Мощный ультрафиолетовый фонарь – прибор, который пригодится для использования в разных целях. Фонарик ультрафиолетовый часто применяют в своей работе специалисты различных отрослей. Его можно использовать в качестве домашней бактерицидной лампы. Изготовление из подручных средств лишит необходимости покупать профессиональное оборудование. О том, как сделать ультрафиолетовую лампу или ультрафиолетовый фонарик своими руками, можно узнать из приведенных ниже пошаговых инструкций.

Схемы подключения УФ

Сначала рассмотрим схемы, которые требуют соединения проводов в электрическую цепь. Также для их построения потребуется основа или подставка:

Сделать стационарный светильник с УФ – лампой не составит труда. Для монтажа простейшего устройства потребуется люминесцентная лампа типа ДРЛ-250. Из нее получится отличный источник ультрафиолетового света. Кроме этого понадобится:

  • поджигающий дроссель;
  • стандартный патрон под цоколь;
  • провода питания.

В качестве основы или подставки можно использовать водостойкую фанеру или термостойкий пластик. На панели закрепляют дроссель, после чего на него устанавливают патрон. При этом вывод катода подключают к разъему «3», а вывод анода к разъему «1» дросселя. Также к дросселю необходимо подсоединить питающий провод.

Конструкция лампы ДРЛ подразумевает две оболочки. Для проекта УФ-лампы внешнюю оболочку необходимо убрать. При этом работать нужно очень аккуратно, чтобы не повредить внутреннюю оболочку.

ВНИМАНИЕ!

Снять верхний слой лампы аккуратно помогут обычные слесарные тиски и мокрая тряпка. ДРЛ-250 оборачивают в смоченную ткань и зажимают в тиски. Это позволяет избавиться от внешнего слоя лампы, не поранившись осколками.

Очищенную заготовку тщательно обрабатывают спиртом или растворителем. После высыхания лампы на нее надевают защитную алюминиевую сетку. Ее можно извлечь из конструкций старых осветительных приборов. Готовое изделие можно прикрепить к штативу. В этом случае лампа станет переносной.

Вторая схема сборки УФ-лампы будет полезна для женщин. Она решает проблему постоянных визитов к маникюрному мастеру для нанесения гель лака на ногти. По сути это специальная сушильная камера, в которой происходит быстрое затвердевание лака под действием ультрафиолета. Для сборки устройства потребуется:

  • внешняя распределительная электрическая коробка на 10 выводов (190х150х77 мм);
  • подложка под светодиоды 3 шт. (Модуль 12x3W Led PCB);
  • термопаста;
  • алюминиевые профили около 60 см (25х8 мм);
  • драйвер 9х3W – 1 шт.;
  • УФ диоды с постоянным прямым током (IF) 700 мА – 9 шт.
  • шнур питания – примерно 1 м.;
  • кнопка включения – 1 шт.;
  • таймер -1 шт.

Рассмотрим алгоритм сборки сушильной камеры на УФ диодах:

  1. Раскручиваем распределительную коробку на две части. Крышку убираем в сторону.
  2. В части короба с выводами под провода прорезаем одно большое отверстие через 3 канала. Зачищаем полученное отверстие наждачной бумагой.
  3. Берем крышку коробки. К ее внутренней стороне прикручиваем три полоски алюминиевого профиля (длина профиля соответствует ширине крышки), так чтобы два профиля были по краям, а один посередине. Устанавливать профиль нужно по ширине коробки.
  4. Переходим к монтажу электрики. На шнур питания подсоединяем в последовательном порядке кнопку включения, драйвер и таймер. К последнему элементу припаиваем провода, которые пойдут на обеспечение питания УФ ламп.
  5. Распаиваем по три диода на одну подложку. Подложки соединением последовательно между собой.
  6. Соединяем 3 диодных подложки с выводами от таймера.
  7. Прикручиваем подложки по центру алюминиевых профилей, так, чтобы лампы смотрели внутрь коробки.
  8. Скручиваем коробку.
  9. Подключаем готовую сушильную камеру в сеть.

Данная схема сложнее всех остальных. Для нее потребуются минимальные знания электротехники, а также навыки пайки.

Основная характеристика

ИК-прожектор представляет собой специальное устройство, которое работает исключительно в инфракрасном спектре благодаря наличию 1 и более ламп. Данное преимущество делает все темные объекты видимыми для камеры наружного видеонаблюдения. Подсветка является очень важным составляющим, так как видеокамеры наружного наблюдения могут нормально фиксировать изображения только при наличии эффективной работы световых лучей, которые отбиваются от различных предметов, тем самым делая картинку более четкой. Без необходимого освещения предметы на картинке будут размытыми и серыми.

ИК-подсветка состоит из следующих частей:

  • Панель, которая имеет в своей структуре светоизлучающие диоды. Данный элемент необходим для обеспечения нормальной работы устройства даже при минимальном освещении или его отсутствии.
  • Светофильтр. Специальный фильтр необходим, чтобы демаскировать устройство. Функция светофильтра заключается в полном поглощении видимой составляющей инфракрасного излучения.
  • Герметичный корпус. Обычно камеры наружного наблюдения устанавливают вне помещения, вся электронная схема требует защиты от неблагоприятной погоды. Для этого устройство помещают в герметический корпус.
  • Драйвер питания. Данное приспособление необходимо для того, чтобы камеру можно было подключить к сети 220 В, так как сам светоизлучающий диод питается малым количеством энергии.

https://youtube.com/watch?v=Y_cC7jmoUdo

Как сделать самому из телефона?

Этот вариант подходит для телефонов со встроенной вспышкой на основе LED лампы. Итак, для сборки простой УФ – лампы из телефона понадобиться:

  • телефон с LED вспышкой;
  • прозрачный скотч;
  • маркер или фломастер фиолетового и синего цвета;
  • канцелярский нож.

Теперь рассмотрим пошаговую схему сборки подобной лампы:

  • На вспышку наклеивают небольшую полоску скотча, перекрывающую LED вспышку. Важно, чтобы под липкой лентой не образовалось воздушных пузырей или складок.
  • Первый слой скотча красят синим цветом маркера. Лучше сделать штрих один раз так, чтобы цвет полностью окрасил ленту.
  • На покрашенную полоску наносят еще один слой скотча, который красят в фиолетовый цвет.
  • Наносят третий слой скотча, который красят в синий цвет.
  • Наносят финальный слой скотча, который красят в фиолетовый цвет.
  • Включают вспышку и смотрят действие получившегося УФ светильника.

Этот простой лайфхак наделал много шума в сети. И породил целую дискуссию. Некоторые комментаторы отмечали, что данный способ не способен заменить настоящий ультрафиолетовый фонарик. Другие не поленились последовать инструкции и с полной уверенностью заявляли, что с основными задачами, вроде поиска источника неприятного запаха в доме с животными или скрытых посланий во время квеста фонарь после «апгрейда» успешно справился. Проверьте и вы, это займёт минимум времени.

Для «симулятора УФ-фонаря» понадобятся: • Фонарик; • Пара резинок; • Тёмно-синий маркер; • Фиолетовый маркер; • Кусочек клеёнки или пищевой плёнки; • Ножницы.

Шаг 1. Отрежьте от пленки небольшой прямоугольник (размер относительно фонарика – как фрагмент бумаги на фото). Зафиксируйте его перед стеклом фонаря с помощью резинки и закрасьте синим маркером . Закрасить нужно полностью, без проплешин.

Шаг 2. Повторите в точности шаг 1. У вас должно получиться два синих слоя пленки перед стеклом.

Шаг 3. Проделайте ту же операцию с ещё одним слоем плёнки и резинкой. Но теперь закрасьте его не синим, а фиолетовым маркером .

Готово! Время проверить шпионские функции. К примеру, на купюрах или надписях ярко-жёлтым маркером.

А ещё можно проделать подобный трюк со вспышкой телефона . Так шпионский гаджет будет всегда под рукой.

Вам понадобятся: • Скотч; • Ножницы; • Синий маркер; • Фиолетовый маркер.

Шаг 1: отрежьте небольшой кусочек прозрачного скотча и наклейте поверх диода вспышки. Закрасьте скотч синим маркером.

Шаг 2: наклейте поверх второй кусочек скотча и также закрасьте его синим маркером.

Шаг 3: наклейте третий фрагмент скотча и закрасьте его фиолетовым маркером.

Подробную видео-инструкцию, как смартфон превратить в УФ-детектор , можно найти тут. Теперь можно почувствовать себя детективом, раскрыть все домашние «преступления» и почивать на лаврах.

Понравилась статья? Тогда поддержи нас, жми

:

Источник: novate.ru

Фонарик на 3 ватта в колбе от шприца

Увидев из чего можно сделать фонарик своими руками можно прийти в удивление, стоимость самодельного гаджета не превысит одного доллара, но эффективность оправдает все ожидания. Самостоятельная сборка подразумевает качество, соответственно долгий срок эксплуатации.

Принцип работы заключается в подключении к аккумулятору через сопротивление в 3 Ом. Заряжает аккумулятор электронный блок, контролирует процесс микромодуль.

Какие нам понадобятся детали:

  • Колба от шприца;
  • Линзы;
  • Светодиод;
  • Кнопка включения;
  • Регистр;
  • Блок подзарядки;
  • Алюминиевая пластина;
  • Медные провода;
  • Аккумулятор;
  • Клей и жидкие гвозди.

Вспомогательные инструменты:

  • Паяльник;
  • Бормашина;
  • Термопистолет;
  • Зажигалка.

Ультрафиолетовая лампа для домашнего использования: устройство и изготовление

Если в доме находится больной человек – это очень некомфортно. Еще более неприятно, когда заболевание вирусное, и приходится соблюдать некоторые предосторожности при общении, стараясь не заразиться. Но, как оказалось, и из этой ситуации можно найти выход, который устроит всех.

При посещении поликлиник или больниц многие сталкивались с тем, что вход в помещение запрещен по причине кварцевания. Многие видели и саму лампу для этого процесса. Но мало кто знает, что собой представляет этот так называемый «кварц» и почему человеку нельзя находиться под его лучами. Так почему бы не разобраться с этим термином.

Настоящее название такой лампы – ультрафиолетовая, а название «кварц» появилось оттого, что у таких приборов колбы сделаны из кварцевого стекла. Но обо всем по порядку. Для начала нужно понять, какие бывают УФ-устройства.

Принцип действия ИК прожекторов

Механика работы и идея применения ИК лампы для видеонаблюдения достаточно проста. В ночное время, при низком уровне естественного освещения — камера не может формировать изображения, поскольку элементы сенсора просто не изменяют своих характеристик.

Вариант организации постоянного фона видимого спектра — достаточно дорог. Он потребует применения мощных прожекторов, повлечет за собой расходы на закупку оборудования, включит стоимость постоянного обслуживания в виде замены сгоревших ламп или светодиодных ячеек.

Не стоит забывать и о расходах на оплату электроэнергии.

Инфракрасная подсветка для видеонаблюдения использует свойства светочувствительного сенсора камеры. Данный элемент способен фиксировать не только волны видимой части спектра, но и захватывать ИК диапазон.

В результате можно получить достаточно четкую и контрастную картину по засвечиваемой площади. Но есть несколько особенностей, которыми характеризуется ИК подсветка для камеры видеонаблюдения.

  1. Мощность светодиодов недостаточна для расширения площади наблюдения.
  2. Установка более мощной подсветки может повлечь за собой необходимость оборудовать камеру дорогими блоками питания, усиления линий передачи мощности, что повлечет за собой удорожание технического решения.

Из-за перечисленных выше сложностей, среднестатистическая камера, в оснащение которой входят ИК светодиоды для видеонаблюдения — может формировать изображение объектов, отстоящих на 10-20 метров, а также обеспечивать обзор ограниченной площади.

Иначе выглядит ситуация с применением внешних источников засветки. Инфракрасный прожектор представляет собой большое количество светодиодов, оптимально использующих мощность источника питания.

Такое устройство способно засвечивать большую площадь без значительных трат энергии. При этом инфракрасный прожектор для видеонаблюдения своими руками может строиться на двух базовых механиках:

  • с постоянной подачей напряжения на светодиоды. Такое решение отличается потреблением энергии, которое линейно растет в зависимости от числа установленных излучателей. Кроме этого, срок работы полупроводниковых элементов ограничен, необходимо организовывать отвод тепла;
  • схемы с импульсным питанием гораздо практичнее. Они несколько сложнее в аппаратной реализации, но легко настраиваются. Установив ИК светодиоды для видеонаблюдения своими руками и отрегулировав схему до получения качественной картинки с камеры — легко добиться снижения потребления энергии, малого выделения тепла. Срок жизни полупроводниковых элементов также значительно возрастает.

При этом общая механика применения самодельного устройства — аналогично той, которую имеет инфракрасная подсветка для камер видеонаблюдения. Отдельно стоящий прожектор обеспечивает равномерную засветку большой площади мониторинга, гарантирует опознавание объектов на значительном расстоянии, предлагает оптимизацию энергопотребления и стоимости системы в целом.

Как сделать ИК подсветку для видеонаблюдения своими руками

Простейшая схема, по которой строится ИК подсветка для камеры видеонаблюдения своими руками, выглядит как линейная структура, где параллельно соединяются:

  1. последовательно включенные диоды, число которых подбирается в соответствии с напряжением источника питания;
  2. последовательно подключенными резисторами, работающими в роли ограничителя тока, номинал элементов выбирается в соответствии с характеристиками применяемых полупроводниковых светоизлучателей.

Данная схема реализует принцип постоянного питания. Такая ИК подсветка для камеры видеонаблюдения надежна, однако при росте мощности возникают проблемы с перегревом заключенной в корпус структуры, а также — удорожается нужный источник напряжения. Гораздо привлекательнее выглядит схема с импульсным управлением диодами.

Виды ультрафиолетовых ламп

Ультрафиолетовые лампы делятся по нескольким параметрам. Они могут быть озоновыми – такой прибор посредством ультрафиолета способствует выделению озона из кислорода. При работе такого устройства важно как можно чаще подвергать проветриванию помещение, т. к. этот газ в больших количествах вредит организму. Так же ультрафиолетовая лампочка может быть безозоновой. На колбе такого прибора нанесено специальное покрытие, которое препятствует выработке озона.

Следующая классификация – мобильность. Устройства могут быть переносного и стационарного исполнения.

По параметрам функционирования могут быть открытыми и закрытыми. Для кварцевания в медицинских учреждениях используются открытые устройства – от ультрафиолетового излучения здесь ничто не защищает и оно рассеивается по всему помещению. Использование их, если в комнате находятся люди или животные, запрещено. Закрытыми (или рециркуляторами) обрабатываются определенные объекты. При работе подобного типа ламп покидать помещение не требуется.

Но есть и еще один тип подобных приборов, который наиболее распространен в плане домашнего пользования – ультрафиолетовая лампа специального применения. Такой тип используется для физиотерапевтического лечения болезни, борется с острыми респираторными заболеваниями.

Обычно в комплекте присутствуют насадки, очки. Также применимы они и в солярии.

Амальгамная лампа

Но есть ультрафиолетовые лампы, которые появились сравнительно недавно. Их отличие от обычных бактерицидных светильников в том, что внутри трубки находится твердое покрытие из сплава таких элементов, как индий, ртуть и висмут. При воздействии электричества этот сплав, нагреваясь, высвобождает испарения ртути, которая и выделяет ультрафиолет. Выработка озона при работе таких ламп не происходит, хотя уничтожение бактерий при этом не теряет своей интенсивности.

Очень важно, что в холодном состоянии лампы ртуть связана другими металлами, а потому при случайном механическом повреждении последствий для организма не будет. Конечно, при повреждении работающих приборов пары этого тяжелого металла могут быть высвобождены, но и тут у амальгамной лампы есть большое преимущество.

Типы ИК освещения

В зависимости от рассматриваемых параметров, инфракрасная подсветка классифицируется по нескольким системам:

  1. Типу светоисточника.
  2. Конструкционным особенностям.
  3. Длине волны.
  4. Дальности действия.
  5. Исполнению оптической системы.

По виду источника излучения приборы ИК подсветки делятся на две разновидности:

Конструкция первых схожа со стандартными ламповыми прожекторами. Среди их главных достоинств особо выделяются – низкое энергопотребление, долговечность, пожаробезопасность и неприхотливость ухода. Второй тип – в качестве источника содержат лампу. Он в свою очередь также разделяется на два подвида:

  1. Непосредственно излучающие в инфракрасном диапазоне. В основе применяется лампочка накаливания с поверхностью, покрытой специальным составом, пропускающим излучение только в диапазоне длин волн порядка 720-800 нм.
  2. Со светофильтром, ограничивающим проход света свыше 950 нм. Главный недостаток – большой расход энергии (до 0,5 кВт/ч) и малый радиус действия.

Вообще, хотя ламповые системы ИК-подсветки и дешевле светодиодных аналогов, они весьма энергозатратны и недолговечны – лампочку приходится регулярно менять.

По конструкционным признакам ИК-подсветка бывает:

  1. Встроенной. Объединена в одном корпусе с камерой слежения. Характеризуется компактностью, а также тем, что ее не надо настраивать под объектив. Недостатки – небольшая мощность, вероятность засветки изображения, особенно объектов, покрытых светоотражающим слоем, а также ложное срабатывание детектора движения из-за излишнего внимания к ИК-светодиоду насекомых в теплое время года.
  2. Внешней. Решает многие проблемы ИК-подсветки встроенного типа. С ее помощью можно делать любой угол освещения, выбирать прибор по мощности и дальности действия и площади покрытия – осветительные пластины, прожектора, фонари и т. д. Минусы – необходимость приобретать для камеры отдельное устройство, устанавливать и настраивать его, что требует дополнительного времени, опыта и сноровки.

По диапазонам длин волн приборы ИК-подсветки разделяются на следующие категории:

Невидимое инфракрасное излучение характерно для приборов освещения, работающих при длине волны свыше 880 нм – все, что ниже находится в области зрительного восприятия. У этой особенности есть и плюсы, и минусы. Для обширной, а, следовательно, и максимально дальней подсветки требуется мощный прибор с диапазоном порядка 780-820 нм. Однако на близком расстоянии излучатель заметен благодаря фоновому красному свечению. Поэтому накоротке применяют устройства, функционирующие в незаметном, хотя и менее слабом сегменте спектра – от 850 до 950 нм.

Все устройства для ИК-подсветки разделяются по дистанции на три группы:

  1. Короткого действия – до 10 метров. Устанавливается на лестничных площадках, в домофонах, видеоглазках, в системах дежурной подсветки и скрытом видеонаблюдении.
  2. Средней дальности – 20-60 м. Используются для подсветки кинотеатров, ночных заведений, придомовых территориях.
  3. Дальнобойные – до 0,35 км. Применяется на больших охраняемых площадях, на улицах, скверах и дорогах.

Устройства для ИК-подсветки в сочетании с различными светоисточниками оснащаются разными видами оптических систем – обычные лампочки, фонари, прожекторы, плафоны.

Обратите внимание! ИК-излучение безопасно для человека и окружающего пространства. На его основе применяется не только подсветка для видеонаблюдения в темное время года, но и приборы обогрева

Однако ввиду того, что спектральная чувствительность глаза человека находится за пределами этого диапазона длин волн, адаптивное сужение зрачка не срабатывает. Поэтому не рекомендуется напрямую долго смотреть на инфракрасный источник, особенно при его высокой мощности.

Устройство ультрафиолетовой лампы

Суть работы ультрафиолетовой кварцевой лампы сходна с люминесцентной. Если разобраться, то это один и тот же прибор освещения. Светильники у этих световых приборов совершенно ничем не отличаются. Различия именно в самих колбах. Трубка ЛЛ изнутри покрыта специальным веществом – люминофором.

Т. к. люминесцентная лампа при пробое и воспламенении ртутных паров выделяет в основном ультрафиолет, который не виден человеческому глазу, люминофор преобразовывает его в видимое свечение. Принцип работы «кварца» идентичен, только внутри колбы отсутствует вещество, преобразовывающее УФ-лучи, которые и убивают бактерии.

Проблема только в том, что ультрафиолет уничтожает все бактерии, а потому и нужных организму в ее излучении нет. Поэтому и нельзя находиться в комнате, где включен подобный прибор открытого типа, и уж тем более смотреть на него. У человека, даже короткое время смотревшего на ультрафиолетовую лампу, после очень болят глаза.

Сфера применения

Применение УФ ламп, что дают разную длину волны, огромное. От косметологии до лечения.

Медицина

В медицине использование УФ ламп практикуется давно. Основная задача, что ставиться перед прибором – быстро дезинфицировать все помещение, поверхности стен, пола, предметы, что пребывают в нем. Приборы, которые применяются в медучреждениях, способны:

  • Убивать грибки и бактерии.
  • Делать нежизнеспособными споры плесени и бактерии, которые находятся в спящем состоянии.
  • Нейтрализовать яйца пылевых клещей, эктопаразитов, любых насекомых.

Исключение – лучи неспособны «достать» паразитов и грибок, которые обитают в обшивке мебели под штукатуркой, то есть те что не находятся на поверхности. Но поверхностный инсектицидный эффект очень мощный.

Лечение УФ лучами

Для растений

В зимнее время обеспечить растениям в теплицах и оранжереях УФ лучи, возможно, только используя специальные лампы. Для растений используют УФ лампы с разной длиной волны, это зависит от его физиологических особенностей и дальнейшего цикла.

Так, длинноволновое излучение стимулирует рост и развитие, средние – дают устойчивость к понижению температуры. Короткие волны для растений губительны и не используются.

Косметология

Все чаще применяются УФ лампы в косметологии, самый простой пример – источники ультрафиолета в соляриях. Для создания ровного загара применяются длинные волны.

Сегодня популярны компактные приборы с УФ излучением для наращивания ногтей и создания аккуратного маникюра. Основная их задача – сушка геля, шеллака, что наносится на ногти. Еще одна возможность – это защита ногтевых пластин от грибка.

Лампа для полимеризации геля и шеллака

Другие сферы

Кроме того, они применяются:

  1. Проверка денежных знаков. На купюры наноситься специальная метка, которая видна только в УФ лучах. Подобные приборы есть в банках, многих магазинах.
  2. Дезинфекция питьевой воды. Вместе с хлорированием применяется озонирование или обеззараживание УФ лучами.
  3. В химическом анализе.
  4. Для ловли насекомых. Этот эффект достигается за счет смещенного видимого диапазона у большинства насекомых.
  5. Для проведения реставрации. Подобный прибор помогает увидеть старые слои лака и новые, они в подобном свечении выглядит по-разному. Для других источников света подобные изменения невидимые, как и для глаз человека.
  6. Для биотехнологий с целью получения генетической мутации.
  7. Используются они в террариумах, где содержат рептилий и черепах, в аквариумах.
  8. Для формирования световых эффектов на разных мероприятиях.

Как сделать ультрафиолетовый детектор из смартфона или карманного фонарика

Любой смартфон можно превратить в ультрафилетовый детектор, с помощью которого видны незаметные невооружённому глазу загрязнения и водяные знаки на денежных купюрах. Для этого понадобится смартфон (обязательно со вспышкой), скотч и два фломастера или маркера — синий и фиолетовый. Наша задача — сделать фильтр, который будет отсеивать все цвета, кроме диапазона, в который входит ультрафиолет.

Наклейте на вспышку смартфона небольшой отрезок скотча и закрасьте его синим маркером. Наклейте ещё один и покрасьте фиолетовым. Повторите ещё раз — один слой с синей краской и один с фиолетовой. Сверху можно наклеить прозрачную ленту для защиты. Используйте обычный скотч, поскольку малярный не подойдёт, он не пропускает ультрафиолет.

Включите вспышку (например, с помощью фонарика или камеры) и посмотрите, работает ли сканер. При включенной вспышке в темноте будут светиться определённые цвета (белый и флоресцентные, хорошо поглощающие ультрафиолет). Имейте в виду, что при ярком дневном освещении увидеть флуоресцентные следы намного труднее, чем в темноте.

Типовые модели и основные производители


Практически все производители видеокамер для наблюдения выпускают ИК-прожекторы для своих устройств, однако все они взаимозаменяемы – можно использовать камеру и прожектор от разных производителей. Тем не менее, следует различать основные типовые модели, которые включают в себя прожекторы ближнего, среднего и дальнего действия.
Следует тщательно анализировать рельеф местности и особенности зона, которую покрывает видеокамера – в зависимости от этих параметров выбирать нужный тип модели. Прожектор ближнего действия отличается малой дальностью освещения (до 10 метров) и относительно широким углом обзора. Наиболее популярная сфера их применения: офисные здания, отделения банков и прочие административные помещения, где необходимо вести ночное видеонаблюдение без использование обычного освещения.

Прожектор средней мощности пользуется популярностью при видеонаблюдении за складскими и открытыми местностями. Такое устройство имеет широкий угол обзора (до 120 градусов), а максимальная дальность составляет 65-80 метров. Использование таких моделей позволяет экономить на монтаже и обслуживании системы.

Дальнобойный прожектор отличается «формой» инфракрасного светового пучка – он имеет вид узконаправленной пирамиды. Максимальная дальность составляет 150-300 метров. Чаще всего такие инфракрасные прожекторы встречаются на дорогах для видеофиксации нарушений, а в повседневной сфере крайне непросто найти сферу их применения.

Если Вас заинтересовали инфракрасные прожекторы, то рекомендуется обратить внимание на продукцию следующих производителей:

  • AXIS;
  • Acumen;
  • BOSCH;
  • ИК-Технологии.

Модели данных производителей отличаются доступной ценой и отличными эксплуатационными характеристиками. Процесс их монтажа крайне прост, а все необходимые работы можно выполнить самостоятельно, без привлечения сторонних специалистов.

Как запросто сделать из вспышки телефона уф-фонарик с помощью скотча,синего и фиолетового маркера

Принцип действия такого фонарика:Свет,излучаемый Солнцем,лампами накаливания,энергосберегающими лампами и вспышками наших любимых смартфонов состоит из электромагнитных волн разной частоты и длины:из видимых глазу волн(видимый свет) и невидимых-в основном мягкого ультрафиолета и инфракрасного излучения высокой интенсивности.Последних там немного,но они есть.Наша задача- попытаться выделить ультрафиолет.С помощью простейшего селективного самодельного светофильтра я покажу,как это сделать.

Светофильтр-устройство ,меняющее спектральный состав и энергию падающего на него оптического излучения.Селективный светофильтр предназначен для для отрезания(поглощения) или выделения каких-либо либо участков спектра.Работает он за счёт поглощения ненужных нам электромагнитных волн(здесь на картинке всех, кроме зеленого) и отражения или пропускания(если прозрачный) электромагнитных волн,ответственных за цвет,необходимый нам.

Чтобы сделать фильтр для выделения ультрафиолета, наклейте на вспышку телефона небольшую полоску обычного канцелярского скотча(малярный не годится,т.к. он сильно поглощает ультрафиолет)

Закрасьте вспышку синим маркером

Далее поверх первого слоя скотча наклеиваем второй

Его тоже закрашиваем синим маркером

Наклеиваем третью полоску скотча поверх второго

Её уже закрашиваем фиолетовым маркером.

Всё,на этом работа заканчивается.Да,так просто.Мы создали световой фильтр на вспышке,поглощающий все электромагнитные волны(остальные он свободно пропускает),кроме тех,что отвечают за синий,фиолетовый цвета и ультрафиолет,которые лучше всего подходят для наблюдения флуоресцентных веществ и зарядки люминофоров.Через несколько дней,кстати,выйдет подробный пост о том,как своими руками приготовить долгосветящиеся и яркие люминофоры различных цветов(светящиеся порошки).Методика уже найдена и проверена.

Включаем фонарик на телефоне

Для проверки напишем что-нибудь флуоресцентным маркером на бумаге

Подносим наш самодельный уф-фонарик. И,вуаля,он работает!

В темноте это заметно намного лучше

Наш самодельный уф-фильтр можно легко снять и наклеить обратно на телефон.Следов не остаётся(редко,правда, остаются,это зависит от качества скотча)

Предлагаю сравнить,как работает от встроенной в смартфон вспышки без фильтра.Всё засвечивается.

Что касается эффективности и пользы:флуоресцентные вещества наблюдать,люминофоры им заражаются неплохо,проверять купюры на поддельность также удаётся(лучше это получается в тёмном помещении).Из недостатков по сравнению с обычным уф-фонариком за 70 рублей из Китая:в пару раз меньше эффективность и добавляется синий,достаточно заметный,иногда мешающий цвет.

Основная характеристика

ИК-прожектор представляет собой специальное устройство, которое работает исключительно в инфракрасном спектре благодаря наличию 1 и более ламп. Данное преимущество делает все темные объекты видимыми для камеры наружного видеонаблюдения. Подсветка является очень важным составляющим, так как видеокамеры наружного наблюдения могут нормально фиксировать изображения только при наличии эффективной работы световых лучей, которые отбиваются от различных предметов, тем самым делая картинку более четкой. Без необходимого освещения предметы на картинке будут размытыми и серыми.

ИК-подсветка состоит из следующих частей:

  • Панель, которая имеет в своей структуре светоизлучающие диоды. Данный элемент необходим для обеспечения нормальной работы устройства даже при минимальном освещении или его отсутствии.
  • Светофильтр. Специальный фильтр необходим, чтобы демаскировать устройство. Функция светофильтра заключается в полном поглощении видимой составляющей инфракрасного излучения.
  • Герметичный корпус. Обычно камеры наружного наблюдения устанавливают вне помещения, вся электронная схема требует защиты от неблагоприятной погоды. Для этого устройство помещают в герметический корпус.
  • Драйвер питания. Данное приспособление необходимо для того, чтобы камеру можно было подключить к сети 220 В, так как сам светоизлучающий диод питается малым количеством энергии.

Материалы

Для сборки понадобится подготовить все составляющие. Чтобы изготовить прибор ультрофиолетового типа, мастер применяет разные инструменты, материалы, все зависит от метода, который он выбрал. Перечислим некоторые из них:

  1. Фонарик-основа. Нередко такие приборы переделывают из стандартных ручных светодиодных моделей. Они состоят из разных деталей. Среди них стоит упомянуть корпус из алюминия или другого прочного материала, застекленный отражатель, модуль светодиодный, отделение для аккумуляторов и пр.
  2. Ультрафиолетовые светодиоды. Для фонарика ультрафиолетового можно приобрести УФ-диоды, сделанные в Китае (каждый из которых стоит от 150 до 300 рублей).
  3. Смартфон. УФ фонарь можно изготовить из обычного мобильного телефона или смартфона.

Чтобы сделать такую вещь из обычной светодиодной модели, понадобятся дополнительные материалы и инструменты: маркеры фиолетового и синего цвета, ножницы, прозрачный скотч.

Проверка работоспособности светильника

Для этого необходимо наличие такого прибора, как мультиметр. Чтобы выполнить проверку, выполняют следующие манипуляции:

  1. Разбирают прибор.
  2. Извлекают лампу.
  3. При помощи мультиметра проверяют есть ли напряжение на контактах лампы.

Если напряжения нет, то в первую очередь стоит заподозрить, что один из контактов оборвался, а если и там все нормально, то пройтись мультиметром по всей цепи, определить неисправное звено и заменить его на запасное.

В случае наличия напряжения на контактах причина поломки кроется в самой лампе, излучающей ультрафиолет, которую отремонтировать невозможно, ее можно только поменять. Поскольку стерилизаторы-облучатели настолько сильно распространены, то с их устройством следует ознакомиться всему обслуживающему персоналу ЛПЗ, дабы своевременно и точно выявлять возможные поломки в этом оборудовании.

Прочие советы

  1. Если захочется сделать что-то еще более практичное, можно смастерить двухрежимный прибор. Понадобится между стандартными светодиодами вставить УФ-диоды. Цепь перенастраивают на двухрежимную работу. Стоит учесть, что УФ-диод выбирают не только по размерам предустановленных. Так, если нужно добиться УФ-излучения, а не просто потока фиолетового света, потребуется приобрести те элементы, которые работают в диапазоне UV-A.
  2. Вместо клейкой ленты, которую сложно снять так, чтобы не оставались липкие следы, подойдет пищевая пленка. Ее точно так же наносят слоями, а поверхность прокрашивают фломастерами. Зафиксировать пленку можно резинкой.

Такими нехитрыми способами можно сделать лампу в домашних условиях. И для этого не потребуется покупать профессиональное оборудование: достаточно подручных средств и УФ-элементов. Когда все будет готово, стоит помнить о правилах безопасности и помнить, что УФ-фонарик нельзя направлять в глаза.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]