Основные характеристики
Для того, чтобы определиться в целесообразности изготовления генератора на неодимовых магнитах, нужно рассмотреть основные характеристики данного материала, которыми являются:
- Магнитная индукция В — силовая характеристика магнитного поля, измеряется в Тесла.
- Остаточная магнитная индукция Br — намагниченность, которой обладает магнитный материал при напряжённости внешнего магнитного поля, равной нулю, измеряется в Тесла.
- Коэрцитивная магнитная сила Hc — определяет сопротивляемость магнита к размагничиванию, измеряется в Ампер/метр.
- Магнитная энергия (BH)max -характеризует, насколько сильным является магнит.
- Температурный коэффициент остаточной магнитной индукции Tc of Br – определяет зависимость магнитной индукции от температуры окружающего воздуха, измеряется в процентах на градус Цельсия.
- Максимальная рабочая температура Tmax — определяет предел температуры, при которой магнит временно теряет свои магнитные свойства, измеряется в градусах Цельсия.
- Температура Кюри Tcur — определяет предел температуры, при которой неодимовый магнит полностью размагничивается, измеряется в градусах Цельсия.
В состав неодимовых магнитов, кроме неодима входит железо и бор и зависимости от и их процентного соотношения, получаемое изделие, готовый магнит, различается по классам, отличающимся по своим характеристикам, приведенным выше. Всего выпускается 42 класса неодимовых магнитов.
Достоинствами неодимовых магнитов, определяющими их востребованность, являются:
- Неодимовые магниты обладают наиболее высокими магнитными параметрами Br, Нсв, Hcм , ВН.
- Подобные магниты имеют более низкую стоимость в сравнении с подобными металлами, имеющими в своем составе кобальт.
- Обладают способностью работать без потерь магнитных характеристик в температурном диапазоне от – 60 до + 240 градусов Цельсия, с точкой Кюри +310 градусов.
- Из данного материала возможно изготовить магниты из любой формы и размеров (цилиндры, диски, кольца, шары, стержни, кубы и др.).
Ветрогенератор на неодимовых магнитах мощностью 5,0 кВт
В настоящее время отечественные и зарубежные компании все более широко используют неодимовые магниты при изготовлении тихоходных генераторов электрического тока. Так ООО «Сальмабаш», г. Гатчина Ленинградской области, выпускает подобные генераторы на постоянных магнитах мощностью 3,0-5,0 кВт. Внешний вид данного устройства приведен ниже:
Корпус и крышки генератора изготавливаются из стали, в дальнейшим с покрытием лакокрасочными материалами. На корпусе предусмотрены специальные крепления, позволяющие закрепить электрический аппарат на несущей мачте. Внутренняя поверхность обработана защитным покрытием, предотвращающим коррозию металла.
Статор генератора набран из электротехнических пластин стали.
Обмотка статора — выполнена эмаль-проводом, позволяющим устройству работать продолжительное время с максимальной нагрузкой.
Ротор генератора имеет 18 полюсов и установлен в подшипниковых опорах. На ободе ротора размещены неодимовые магниты.
Генератор не требует принудительного охлаждения, которое осуществляется естественным путем.
Технические характеристики генератора мощностью 5,0 кВт:
- Номинальная мощность – 5,0 кВт;
- Номинальная частота – 140,0 оборотов/минуту;
- Рабочий диапазон вращения – 50,0 – 200,0 оборотов/минуту;
- Максимальная частота – 300,0 оборотов/минуту;
- КПД – не ниже 94,0 %;
- Охлаждение – воздушное;
- Масса – 240,0 кг.
Генератор оснащен клеммной коробкой, посредством которой осуществляется его подключение к электрической сети. Класс защиты соответствует ГОСТ14254 и имеет степень IP 65 (пылезащищенное исполнение с защитой от струй воды).
Конструкция данного генератора приведена на рисунке, приведенном ниже:
где: 1-корпус, 2- крышка нижняя, 3- крышка верхняя, 4- ротор, 5- неодимовые магниты, 6- статор, 7- обмотка, 8- полумуфта, 9- уплотнения, 10,11,12- подшипники, 13- клеммная коробка.
Технологический разрез линейного генератора
Корпус двигателя 1 — сварной стальной, цилиндрической формы, имеет внутри опоры 2, 3 и 4 для установки втулки рабочего цилиндра 5. Втулка крепится нажимным кольцом 6 на 8-ми шпильках. Шпильки крепятся в толстостенной фундаментной плите 7. Далее на втулку одевается цилиндрический водяной коллектор 8. После коллектора на втулку цилиндра одевается газовыхлопной коллектор-улитка 9.
Проточка втулки и улитки на посадочных поверхностях устроены таким образом, что между ступеньками зажимается теплостойкая асбестовая прографиченная прокладка. Улитка при работе нагревается и может расширяться в линейном направлении. Для возможности расширения улитка крепится на длинных шпильках 10, проходящих через трубки 11, гайками 12, которые создают нажимной усилия на улитку через пружины 13. После улитку на втулку одевается водяной коллектор 14.
Втулка рабочего цилиндра 5 цельная. Центральная часть втулки имеет утолщение так же, как и в месте крепления втулки — гребень 15. В центральной части втулка имеет отверстия для 2-х насос-форсунок 16. Так же втулка имеет с каждой стороны от центра по 6 отверстий для штуцеров лубрикаторной смазки (на чертеже не показана). Во втулке в центральной части внешне сделана цилиндрическая проточка для отвода и сбора охлаждающей воды с тангециальних сверлений охлаждающих каналов 17. На втулке есть 17-ть канавок для резиновых уплотнительных колец системы охлаждения. Во втулке со стороны выхлопа и со стороны продувки является тангенциальные расположены окна.
Линейный генератор имеет силовой сварной корпус 18 и легкий корпус для обеспечения безопасности обслуживающего персонала. Легкий корпус закрывается с торцов двигателя крышками 18 на фланцах.
Поршневая группа каждого линейного генератора состоит из 2-х поршней 20. Внутренний поршень крепится к корпусу индуктора 21 на 8-ми шпильках 22. Внешний поршень крепится к траверс-диска 23 на 8-ми шпильках 24. Траверса-диск цилиндрической формы подкреплен в радиальном направлении треугольными косынками 25 с двух сторон, которые крепятся сваркой. Каждый поршень имеет по 6 колец: 4 компрессионных и 2 маслосъемных. Во избежание ударов поршней друг о друге при высоких степенях сжатия в линейном генераторе, днища поршней имеют плоскую конфигурацию.
Поршни имеют водяное охлаждение. Вода во внешние поршни подается по внутренней телескопической неподвижной трубке 26 с соплом на конце. Охлаждающая вода возвращается по телескопической средней трубке 27. Трубка 27 движется в неподвижной трубке 28. Между трубками 27 и 28 находятся уплотнения 29.
Внутренний поршень также охлаждается водой. Вода подводится по телескопической трубке 30, которая крепится к корпусу индуктора 21 с помощью фланца. В индукторе и в опорном фланце поршня есть канал. Далее вода движется по трубке 31 и охлаждает поршень. Возвращается вода по трубке 32, по аналогичному пути и по телескопии 33 отводится уже подогретая.
Внешние поршни связаны между собой посредством траверза-диска 23, 6-ти штанг 34 и корпуса индуктора 35. На концах штанги имеют резьбу и крепятся за счет гаек, зажимаемых гидродомкратом. Движение внутренних и внешних поршневых групп сдвинуты на 180 градусов. Синхронизм обеспечивается за счет механизма синхронизатора — 3-х шестерен 36 6-ти зубчатых реек.
Три рейки 37, относящиеся к внутренней группе, имеют в части, ближней к корпусу индуктора 21 цилиндрическое сечение и проходят через сальники 38. Далее сечение рейки переходит в квадратное. Рейки, относящихся к внешней группе, — это 3 из 6-ти штанг 34, на которые с помощью болтов прикреплены зубчатые рейки. Все 3 механизма синхронизаторов расположены в отдельных выгородках и имеют в своем объеме масло для смазки механизма.
Сравнение ЛГ и традиционного дизеля.
- В ЛГ производство и сборка двигателя существенно упрощается из-за отсутствия таких дорогих и сложных в производстве деталей как распределительный вал и коленчатый вал.
- Уменьшение расхода топлива за счет увеличения механического КПД из-за отсутствия коленвала и распредвала.
- Уменьшение вибрации из-за взаимного гашения возникающих инерционных сил.
- Повышенная надежность ЛГ за счет уменьшения количества движущихся деталей.
- В ЛГ невозможно обеспечить ровную синусоиду генерируемого тока из-за неравномерности скорости перемещения магнитов относительно катушек. Но при современном уровне развития преобразовательной техники эта проблема не является неразрешимой.
- Повышенная неустойчивость работы ЛГ из-за наличия всего двух цилиндров и отсутствия маховика. При пропуске вспышки в одном из цилиндров ЛГ остановится, так как во втором цилиндре не произойдет сжатия воздуха достаточного для воспламенения топлива. Поэтому для решения этой проблемы возникает необходимость в установке как минимум двух форсунок на один цилиндр.
Олег Гуняков
Плюсы и минусы
К достоинствам ветрогенераторов, изготовленных с использование неодимовых магнитов можно отнести следующие характеристики:
- Высокий КПД устройств, достигаемый за счет минимизации потерь на трение;
- Продолжительные сроки эксплуатации;
- Отсутствие шума и вибрации при работе;
- Снижение затрат на установку и монтаж оборудования;
- Автономность работы, позволяющая осуществлять эксплуатацию без постоянного обслуживания установки;
- Возможность самостоятельного изготовления.
К недостаткам подобных устройств можно отнести:
- Относительно высокая стоимость;
- Хрупкость. При сильном внешнем воздействии (ударе), неодимовый магнит способен лишиться своих свойств;
- Низкая коррозийная стойкость, требующая специального покрытия неодимовых магнитов;
- Зависимость от температурного режима работы – при воздействии высоких температур, неодимовые магниты теряют свои свойства.
Принцип работы бестопливного генератора Адамса
Одна из наиболее популярных моделей преобразует энергию в индукционный ток. Впервые ее построил ученый Адамс, в честь которого она и получила свое название.
Схема простого бестопливного генератора (у Бедини тот же принцип действия):
Базовые комплектующие агрегата Адамса следующие:
- генератор, внутри которого возникает электромагнитное поле;
- инвертор, который преобразовывает магнитные импульсы в переменный ток;
- аккумуляторы, которые накапливают энергию для ее дальнейшего использования.
Принцип работы прибора основан на явлении электромагнитной индукции. Вращение мотора зависит от силы, с которой он отталкивается от полюсов магнитов. Основным конструктивным элементом является многополюсный безредукторный генератор прямого вращения. Магниты устанавливаются на внешний край генератора. Их число зависит от желаемой мощности. У подобных агрегатов очень высокое КПД — около 90%. При необходимости они хорошо соединяются друг с другом, образуя единую автономную сеть.
Фазы — что лучше — три или одна?
Многие любители электрической техники идут по пути наименьшего сопротивления и, чтобы не заморачиваться, останавливают свой выбор на однофазном статоре для ветряка. Однако у него имеется одна неприятная особенность, нивелирующая простоту сборки, — это вибрация в нагруженном состоянии, по причине непостоянства отдачи тока. Ведь амплитуда такого статора скачкообразна, — достигая максимума, когда неодимовые магниты располагаются над катушками, а после падая до минимума.
А вот, когда генератор сделан по трехфазной системе, то вибрации отсутствуют, и показатель мощности ветряка имеет постоянное значение. Причина такого отличия заключается в том, что ток, падая в одной фазе, в то же время нарастает в другой. И в итоге, ветрогенератор, работающий в трехфазной системе, может быть более эффективным до 50 %, чем точно такой же, но использующий однофазную систему. И главное, — нагруженный трехфазный генератор не дает вибрации, следовательно, мачта не дает повода для жалоб на ветрогенератор в надзирающие органы недоброжелателям из числа соседей, поскольку не создает надоедливого гула.
Особенности ротора и статора
Генератор на транзисторе
Чтобы сделать эффективный генератор на магнитах из неодимового сплава своими руками, учитывайте при сборке следующие рекомендации:
- Для повышения прочности диск делают из стали. Его толщину делают не менее чем у самих магнитов. В противном случае часть силового поля будет рассеиваться. При правильном соблюдении пропорций к обратной стороне собранного изделия не притягивается швейная игла;
- Расстояние между отдельными магнитами делают равным или более половины ширины изделий;
- Толщину статора в собранном состоянии делают равной или меньше толщины неодимовых магнитов;
- Трехфазный магнитный генератор делают по пропорциям 3 к 3 или 4 к 3 (количество магнитов/индукционных катушек, соответственно).
К сведению. Магниты прикрепляют, строго соблюдая чередование полюсов. Чтобы не ошибиться, на соответствующих гранях заранее делают пометки маркером.
Принцип работы генератора
В промышленном масштабе для выработки электроэнергии используется топливо, которое при сгорании выделяет энергию, преобразуемую в электричество. Создатели современных бестопливных генераторов при разработке своих устройств хотят устранить промежуточное звено — топливо.
Таким образом создатели генераторов исключают дополнительные цепочки преобразований, пытаясь один вид энергии сразу конвертировать в другой.
Принцип работы генерирующего устройства состоит в получении электрического тока путем формирования направленного потока заряженных частиц в проводящей среде. Влияние можно оказывать следующими способами:
- создать внешнее переменное магнитное поле, наводящее в проводнике ЭДС;
- поддерживать разность потенциалов на концах проводника;
- перевести токопроводящую среду в режим самогенерации, когда выделяемой энергии больше, чем требуется для поддержания процесса.
Объединяет все генераторы на любом принципе работы необходимость в подаче некоторого стартового количества энергии для запуска процесса.
В описании любого генератора без топлива источник энергии, процесс ее извлечения, а также дальнейшего преобразования не приводится или дается в общих утверждениях.
Процесс создания ротора
Основой генератора автор разработки решил сделать ступицу автомобиля с дисками тормоза, поскольку она мощная, надежная и идеально сбалансированная. Начав делать ветряк своими руками, в первую очередь следует подготовить основу для ротора — ступицу, — почистить ее от грязи, краски и смазки. После чего приступить к наклейке постоянных магнитов. Для создания данного ветрогенератора, их было использовано по двадцать штук на диске. Размер неодимовых магнитов составил 25х8 миллиметров. Однако, и их количество, и их размер могут варьировать в зависимости от целей и задач человека, своими собственными руками создающего ветрогенератор. Однако всегда будет правильным, для получения одной фазы, равенство количества полюсов числу неодимовых магнитов, а для трех фаз — выдержка соотношений полюсов и катушек — два к трем или три к четырем.
Магниты следует располагать учитывая чередование полюсов, к тому же максимально точно, но прежде, чем приступить к их наклейке, нужно либо создать бумажный шаблон, либо прочертить линии, делящие диск на сектора. Чтобы не перепутать полюса, делаем отметки на магнитах. Главное — выполняем следующее требование — те магниты, которые стоят напротив друг друга, должны быть повернуты разными полюсами, то есть притягиваться.
Магниты приклеиваются к дискам при помощи супер-клея и заливаются. Также нужно сделать бордюрчики по краям дисков и в их центре, либо намотав скотча, либо вылепив из пластилина для недопущения растекания.
Модификация автомобильного генератора
Создание ротора на постоянных магнитах требует достаточно серьезного вмешательства в конструкцию. Необходимо уменьшить диаметр на толщину магнитов плюс толщину стальной гильзы, которая одевается на ротор для образования сплошного магнитного потока и одновременно служит посадочной площадкой под магниты. Некоторые специалисты обходятся без гильзы, устанавливая магниты прямо на ротор с уменьшенным диаметром и фиксируя на эпоксидку.
Процесс изготовления требует участия производственного оборудования. В токарный станок зажимается ротор и аккуратно снимается слой с таким расчетом, чтобы установленные магниты вращались с минимальным зазором, но вполне свободно. Установка магнитов производится на пластины ротора с чередованием полюсности.
Наибольшего эффекта удается добиться при установке относительно небольших по размерам магнитов, расположенных рядами в продольном направлении. Достигается ровный и мощный магнитный поток, воздействующий на силовые обмотки статора с равномерной плотностью во всех точках.
Изготовление ротора из ступицы и тормозного диска
Рассмотренный способ относится к готовым генераторам, нуждающимся в небольших изменениях конструкции. К таким устройствам относятся автомобильные генераторы, часто применяющиеся самодеятельными конструкторами в качестве базового устройства. Зачастую генераторы собирают полностью самостоятельно, не имея готового устройства.
В таких случаях действуют несколько иначе. За основу берется автомобильная ступица с тормозным диском. Она качественно отбалансирована, прочна и приспособлена к нагрузкам определенного рода. Кроме того, размер ступицы позволяет разместить по окружности большое число магнитов, позволяя получить трехфазное напряжение.
Магниты с чередованием полюсности размещают на равноудаленном от центра расстоянии. Очевидно, что наибольшее число можно установить, если приклеивать их как можно ближе к наружному краю. Наиболее точным показателем станет размер магнитов, который определит возможность размещения на определенном расстоянии. Число магнитов должно быть четным, чтобы не сбивался ритм чередования полюсов при вращении.
Наклейка магнитов на ступицу производится при помощи любого клея, оптимальным вариантом считается эпоксидная смола, которой заливают магниты полностью. Это защищает их от воздействия влаги или от механических воздействий. Перед заливкой по краю ступицы рекомендуется сделать бортик из пластилина, не позволяющий эпоксидке стекать со ступицы вниз.
Конструкция генератора на автомобильной ступице наиболее удобна при изготовлении вертикального ветряка. Примечательно, что подобную схему можно использовать и без ступицы, на диске, вырезанном из обычной фанеры. Такая конструкция намного легче, позволяет выбирать удобный размер, что делает возможным создание чувствительного и производительного устройства.
Обзор БТГ и их схемы
Сегодня существует достаточно большое количество бестопливных генераторов различной конструкции и принципа действия. Разумеется, далеко не все модели и принцип их действия освещались создателями для широких масс. Большинство бестопливных генераторов остаются тайной, свято оберегаемой создателями и патентами. Нам остается лишь проанализировать доступную информацию о принципе их действия и общие сведения об эффективности.
Генератор Адамса – «Вега»
Достаточно эффективный генератор магнитного типа изобретенный на основе теории выдвинутой ученными Адамсом и Бедини. В основе работы генератора лежит вращающийся магнитный ротор, который набирается из постоянных магнитов с одноименной ориентацией полюсов. При вращении ротора создается синхронное магнитное поле, которое наводит в обмотках статора ЭДС. Для поддержания вращающего момента ротора на него подаются краткосрочные электромагнитные импульсы.
Промышленную реализацию данного принципа получил генератор «Вега», происходит от аббревиатуры Вертикальный генератор Адамса, который предназначен для электроснабжения частных домов, дач, судоходных приспособлений. За счет кратковременных импульсов на выходе создается пульсирующее напряжение, подающееся на аккумуляторы для зарядки, а с них инвертируется в переменное промышленной частоты. Но вопрос соответствия заявленных параметров его реальным возможностям достаточно спорный.
Генератор Тесла
Был запатентован известным сербским физиком более ста лет назад. Принцип действия заключается в наличии электромагнитного излучения в атмосфере Земли, в то время как сама планета представляет собой значительно более низкий уровень потенциала.
Рис. 1. Принципиальная схема генератора Тесла
Посмотрите на рисунок, бестопливный генератор Тесла условно состоит из таких частей:
- Приемника излучения — изготавливается из проводящего материала, расположенного на диэлектрическом основании. Приемник должен обязательно изолироваться от земли и размещаться как можно выше;
- конденсатор (C) – предназначен для накопления электрического заряда;
- заземлитель – предназначен для электрического контакта с землей.
Принцип действия заключается в получении электромагнитной энергии приемником, которая начинает протекать по замкнутой цепи на землю. Но, из-за наличия конденсатора, заряд не стекает по заземлителю, а накапливается на пластинах. При подключении к конденсатору нагрузки произойдет питание устройства за счет разрядки конденсатора. Помимо этого конструкция может дополняться автоматикой и преобразователями для беспрерывного электроснабжения совместно с подзарядом.
Генератор Росси
Работа этого бестопливного генератора основана на принципе холодного ядерного синтеза. Несмотря на отсутствие классических турбин, приводимых в действие паром или сгоранием нефтепродуктов, для его функционирование вместо сжигания топлива используется химическая реакция между никелем и водородом. В камере генератора Росси происходит экзотермическая реакция с выделением тепловой энергии.
Следует отметить, что для нормального протекания реакции применяется катализатор и затрачивается электроэнергия. Как утверждает Росси, количество вырабатываемой тепловой энергии получается в 7 раз больше затрачиваемого электричества. Эту модель уже начинают внедрять для отопления участков и выработки электроэнергии. Но, так как для работы все же необходимо заправлять установку рабочими реагентами, совсем бестопливной назвать ее нельзя.
Генератор Хендершота
Принцип действия этого бестопливного генератора был предложен Лестером Хендершотом и основан на преобразовании магнитного поля Земли в электрическую энергию. Теоретическое обоснование модели ученый предложил еще в 1901 – 1930 гг, она состоит из:
- электрических катушек, находящихся в резонансе;
- металлического сердечника;
- двух трансформаторов;
- конденсаторов;
- постоянного магнита.
Для работы схемы обязательно должна соблюдаться ориентация катушек с севера на юг, благодаря чему произойдет вращение магнитного поля, которое сгенерирует ЭДС в катушках.
Марк Хендершот, сын Лестера Хендершота представляет свой БТГ
Также в сети ходит и схема данного БТГ (рисунок ниже). Насколько она правдивая — я не могу сказать.
Схема генератора Хендершота
Генератор Тариэля Капанадзе
Наш современник утверждает, что открыл возможность получения электрической энергии из эфира, работая с катушками Теслы и продолжая исследования известного ученного. Бестопливный генератор Капанадзе состоит из катушки Тесла, блока конденсаторов, аккумулятора и инвертора, но эта компоновка лишь догадка, сам изобретатель держит конструкцию бестопливного генератора в строжайшей тайне.
Рис. 2: общий вид генератора Капанадзе
Посмотрите на рисунок 2, здесь приведен общий вид генератора свободной энергии. Сегодня ходят слухи о попытке широкомасштабной реализации устройства для нужд потребителей в некоторых странах, но конечного результата им достичь так и не удалось.
Также по сети ходит и электрическая схема данного генератора (рисунок ниже). Но насколько она правдивая — мы сказать не можем.
Электрическая схема генератора Капанадзе
Генератор Хмелевского
Согласно официальной версии бестопливный генератор Хмелевского был открыт случайно, так как создатель задумывал его как блок питания для преобразования постоянного тока в переменный. Но он нашел широкое применение в геологоразведке и получил широкое распространение в экспедициях, удалявшихся от источников центрального энергоснабжения.
Такой бестопливный генератор состоит из трансформатора с расщепленными обмотками, резисторов, конденсаторов и тиристора. Генерация электроэнергии происходит за счет особой конструкции самого трансформатора, который может создавать встречную ЭДС больше, чем на входе. Такой результат достигается за счет резонансного эффекта и применения напряжения определенной частоты и амплитуды.
Генератор Джона Серла
В основе бестопливного генератора Серла лежит принцип магнитного взаимодействия между сердечником и роликами. При котором магнитные ролики размещаются на равноудаленном расстоянии и стремятся сохранить свою позицию после приведения системы в движение. В состав магнитного двигателя входит многокомпонентный неподвижный сердечник, вокруг которого вращаются такие же многокомпонентные ролики. По диаметру вокруг роликов установлены катушки, в которых генерируется ЭДС при прохождении возле них магнитного ролика. Для запуска устройства применяются пусковые электромагниты, которые подают импульсы, приводящие в движение ролики.
Рис. 3: общий вид генератора Серла
Как утверждает Серл, ролики самостоятельно увеличивают скорость вращения за счет переменного магнитного поля, создаваемого за счет разнополюсного совмещения магнитов внутри роликов и внутри неподвижного сердечника. При изготовлении конструкции в три уровня скорость вращения приводит не только к выработке электроэнергии, но и снижает массу аппарата вплоть до антигравитационного эффекта.
Генератор Романова
Принцип работы бестопливного генератора Романова заключается в подаче стоячих волн на одну из пластин конденсатора, в то время как вторая пластина напрямую подключается к земле.
Рис. 4: принцип работы генератора Романова
Посмотрите на рисунок, здесь приведен принцип работы устройства, при подключении одной пластины к земле, на ней возникает определенный заряд. Стоячие волны на второй пластине обеспечивают генерацию потенциала, значительно отличающегося от потенциала земли. В качестве генератора стоячей волны выступают катушки с разнонаправленной намоткой, в которой вихревые токи компенсируют активную составляющую тока. После накопления заряда конденсатор может использоваться для питания электрических приборов в качестве нагрузки.
Но однозначного успеха для бытовых или промышленных целей в реализации данной модели добиться так и не удалось.
Генератор Шаубергера
Такой бестопливный генератор основан на получении вращательного момента на турбине за счет перемещения воды по системе труб и дальнейшем преобразовании механической энергии в электрическую. Для получения такого эффекта в конструкции генератора используется сквозной поток воды, получаемый от перемещения воды снизу вверх.
Рис. 5: принципиальная схема генератора Шаубергера
Принцип действия этого механического генератора основан на получении кавитационных полостей в жидкости – состояния разрежения близкого к вакууму, из-за чего вода приходит в движение не сверху вниз, как мы привыкли наблюдать в природе, а снизу вверх, что приводит в движение ротор электрического генератора и создает замкнутый цикл. Когда вода поднимается по внутренним трубкам вверх и опускается назад в исходный резервуар.
Ветряк с аксиальным генератором на неодимовых магнитах
Наиболее сильными магнитами, обладающими оптимальными параметрами для использования в конструкции генератора, являются неодимовые магниты. Они несколько дороже обычных, но превосходят их многократно и дают возможность создать мощное устройство при относительно компактном размере.
Принципиального отличия в конструкции не имеется. Неодимовые магниты изготавливаются в различных формфакторах, позволяющих выбрать наиболее удобный для себя вариант — тонкие продолговатые брусочки, форма таблетки, цилиндры и т.д. если используется металлический ротор, то приклеивать магниты необязательно, они сами по себе с усилием прикрепляются к основанию. Остается лишь залить их эпоксидкой для защиты от коррозии.
Схема и конструкция свободного генератора на 20 квт
Под БТГ понимается устройство, вырабатывающее электроэнергию без затрат на вращение вала и другие процессы, требующие расхода энергии. В наше время освоены технологии производства электричества при помощи солнечной энергии, ветра, перепадов по высоте течения рек, приливов и отливов. Человеку доступны инструменты и ресурсы, позволяющие воспроизводство одной из этих технологий в домашних условиях.
Способ намотки катушки статора ветряка
Для того, чтобы сделанный своими руками ветрогенератор на неодимовых магнитах работал с максимальной отдачей, статорные катушки следует рассчитывать. Однако большинство мастеров предпочитают делать их на глаз. К примеру, тихоходный генератор, способный заряжать 12 В аккумулятор, начиная со 100 — 150 оборотов за минуту, должен иметь во всех катушках от 1000 до 1200 витков, поровну разделенное между всеми катушками. Увеличение количества полюсов ведет к росту частоты тока в катушках, благодаря чему генератор, даже при малых оборотах, дает большую мощность.
Намотка катушек должна производиться по возможности более толстыми проводами, с целью снижения сопротивления в них. Делать это можно на оправке, либо на самодельном станке.
Для того чтобы разобраться, какой потенциал мощности имеет генератор, покрутите его с одной катушкой, поскольку, в зависимости от того, в каком количестве будут установлены неодимовые магниты и какова их толщина, данный показатель может существенно отличаться. Измерение проводятся без нагрузки при необходимом числе оборотов. Например, если генератор при 200 оборотах за минуту обеспечивает напряжение в 30 В, имея сопротивление в 3 Ом, то следует из 30 В вычесть 12 В (напряжение питания аккумулятора) и полученный результат — 18 делим на 3 (сопротивление в омах) получаем 6 (сила тока в амперах), которые и пойдут от ветрогенератора на зарядку АКБ. Однако, как показывает практика, по причине потерь в проводах и диодном мосту, реальный показатель, который будет производить магнитный аксиальный генератор, будет поменьше.
Магниты для создания ветрогенератора лучше брать в форме прямоугольника, поскольку их поле распространяется по длине, в отличие от круглых, поле которых сосредотачивается в центре. Катушки, как правило, мотают круглыми, хотя лучше делать их несколько вытянутыми, что обеспечивает больший объем меди в секторе, а также более прямые витки. Отверстие внутри катушек должно быть равно или превышать ширину магнитов.
Толщина статора должна быть такой же что и магниты. Форма для него обычно фанерная, для прочности под катушки и поверх них кладут стеклоткань, и все это заливается эпоксидной смолой. Для того, что бы не допустить прилипания смолы к форме, последнюю смазывают любым жиром либо применяют скотч. Провода предварительно выводят наружу и скрепляют между собой, концы каждой фазы после этого соединяют треугольником либо звездочкой.
Способы сделать устройство самому
Для изготовления бестопливного генератора своими руками нужно выбрать соответствующую технологию. Многие авторы избегают детального описания использованных инструментов и материалов, электрических схем. В результате описываются якобы работающие модели, но без достоверной информации о функционирующих устройствах.
Использование масла
БТГ с использованием масла имеют другое название — мокрый способ получения электричества. Их отличительной чертой является применение аккумуляторов для накопления и отдачи энергии. Построение таких устройств требует следующих ресурсов и узлов:
- трансформатора переменного тока;
- зарядного устройства;
- АКБ для накопления полученного электричества;
- усилителя мощности, увеличивающего подачу тока.
Зарядное устройство можно взять готовое, но оно, вероятнее всего, окажется слабым и неспособным обеспечить требуемый зарядный ток. Поэтому для 20 кВт установки его лучше изготовить самостоятельно. Обзоры и рекомендации по сборке таких устройств имеются в свободном доступе.
Принцип работы устройства прост. К аккумуляторной батарее необходимо подключить входную обмотку трансформатора. К ее клеммам подсоединяется усилитель мощности, преобразующий и повышающий напряжение 12 В или 24 В, снимаемое с аккумулятора. Зарядное устройство используется для поддержания АКБ в рабочем состоянии.
Сухой вариант
Этот способ предполагает в качестве накопителя использовать конденсатор большой емкости. Свою схему сухого варианта БТГ помогут реализовать такие приборы и материалы:
- трансформатор;
- прототип генератора;
- проводники с нулевым сопротивлением;
- динатрон;
- сварочный аппарат.
Прототип генератора соединяется особыми проводниками с трансформатором. Для надежного контакта требуется применять сварочный аппарат. Динатрон выполняет регулирующую функцию в создаваемом макете. Расчетное время функционирования этого агрегата составляет около 3 лет без обслуживания.
Промышленный вариант БТГ для бытового применения
Солнечные батареи полностью удовлетворяют требованиям бестопливных генераторов. При этом нет необходимости разрабатывать схему и собирать ее из различных узлов. В продаже уже имеются солнечные электростанции для бытового применения производительностью 20 кВт/сут. Средняя стоимость комплекта находится в пределах 260 000 — 360 000 руб. В него входят:
- солнечные панели;
- 1-фазный инвертор на 6 — 20 кВт;
- коммутационное оборудование (кабели, выключатели, предохранители);
- крепления.
Возможна работа как в полностью автономном режиме, так и в сочетании с другими источниками энергии, мобильными бензиновыми генераторами или стационарными электросетями.
Электрические и технические параметры генератора
Расчет напряжения выполняют по формуле:
Самодельный генератор
U=2*Ч*КП*КК*КВ*МИ*П, где:
- U – напряжение в Вольтах;
- Ч – частота оборотов ротора генератора за одну секунду;
- КП – количество магнитных полюсов;
- КК – количество индукционных катушек в статоре;
- КВ – число витков проводника в одной индукционной катушке;
- МИ – магнитная индукция в Тл, которая образуется в стандартном зазоре (2 мм);
- П – площадь поверхности одного неодимового магнита, в кв. м.
Если применяют простые катушки, для расчета берут магнитную индукцию 0,5 Тл. При добавлении сердечника из электротехнической стали значение увеличивают до 0,7-0,9Тл.
К сведению. Формула действительна при соединении обмоток «треугольником». Если трехфазный генератор собирают по схеме «звезда», полученное значение умножают на поправочный коэффициент 1,7.
После вычисления напряжения надо узнать сопротивление в обмотках. После этого несложно будет определить силу тока и мощность. Для медного проводника удельное сопротивление составляет 0,0175 Ом на мм кв./ метр. Для расчета общей величины применяют формулу:
С= (УС*Д)/ПП, где:
- С – сопротивление, в Ом;
- УС – удельное сопротивление определенного материала;
- Д – длина проводника в метрах;
- ПП – площадь проводника в сечении, мм кв.
Для расчета силы тока вычитают из напряжения магнитного генератора на холостом ходу напряжение подсоединенного для зарядки аккумулятора. Полученное значение делят на величину рассчитанного по предыдущей формуле сопротивления.
Увеличение/уменьшение оборотов меняет соответствующим образом силу тока при неизменном значении напряжения на клеммах батареи аккумуляторов. Для расчета производительности ветроустановки в разных режимах используют стандартную формулу:
P=I*U, где:
- Р – мощность, Ватт;
- I – сила тока, Ампер;
- U – напряжение, Вольт.
Наиболее популярные модели
На текущий момент наиболее популярными генераторами являются модели от , «U-Polemag», «Вега», а также «Верано-Ко». Они занимают обширную часть рынка устройств.
«Вега» производит аппараты, которые работают исходя из принципа магнитной индукции. Эту идею смог воплотить знаменитый физик Адамс. Цена зачастую зависит от мощности и размеров аппарата. Минимальная стоимость составляет 45 тыс. руб. У этого производителя есть ряд преимуществ:
- Продукция от очень экологична.
- Генераторы полностью бесшумны, что позволяет их устанавливать в любом месте.
- Аппараты сравнительно компактные.
- У производителя довольно много моделей, мощность которых начинается от 1,5 кВт и достигает до 10 кВт.
Минимальный эксплуатационный срок составляет 20 лет. Аккумуляторы необходимо заменять через каждые 3−4 года.
«Верано-Ко» — это украинский производитель, использующий для своей продукции только качественные комплектующие. Производит генераторы как для бытовых нужд, так и для промышленных целей. Принцип работы альтернативного источника энергии такой же, как и у других магнитных агрегатов. Самая дешёвая модель стоит 50 тыс. руб. Цены на устройства достигают 200 тыс. руб.
Вам это будет интересно Принцип работы реле тока и виды устройств
«U-Polemag» является китайским производителем. Представляет наибольшее разнообразие моделей генераторов. Стандартное КПД устройств составляет 93%. Максимальные потери энергии — 1%. Зачастую приобретается для бытового использования. Имеет компактные габариты, низкий уровень шума и небольшой вес. В комплектацию входят системы охлаждение. Максимальная длительность использования достигает 15 лет. Цены на модельный ряд начинаются от 30 тыс. руб. и достигают 90 тыс. руб.
«Энерджисистем» производит устройства вертикального типа. Однозначного мнения о качестве и мощности аппаратов у потребителей нет. Цены на генераторы немного завышены и начинаются от 50 тыс. руб.
Как согласовать параметры функциональных частей
Лопасти по энергетическому потенциалу должны соответствовать определенному асинхронному двигателю или собранному своими руками ротору на магнитах. При существенных отклонениях для получения достаточной электрической мощности придется создавать новые изделия с нужными параметрами. Обратная ситуация также недопустима. Слишком крупные лопасти не способны быстро вращаться. При сильном ветре повышается риск разрушения подобных конструкций.
Чтобы не ошибиться, составляют таблицу с режимами работы оборудования при разной скорости вращения с шагом 50-100 об./мин. Далее пользуются специализированными калькуляторами, которые по заданным значениям рассчитывают геометрические параметры винта. Эти изделия создают из подходящей древесины, металла, пластика. В качестве заготовок подойдут стандартные трубы из поливинилхлорида для наружных канализационных сетей.
Создание аппарата своими руками
Получение электрической энергии в огромных количествах без затрат топлива — идея заманчивая и вполне выполнимая. Создание такого устройства можно рассмотреть на примере генератора Адамса. Для самостоятельной сборки понадобятся:
- Магниты. Чем больше магнит, тем сильнее он воздействует на индукционное поле, а также на количество вырабатываемой энергии. Для генератора небольшой мощности подойдут маленькие куски. Желательно, чтобы размеры были одинаковыми. Для нормальной работы достаточно 15 штук. Плюсовой полюс одного магнита должен устанавливаться напротив плюса другого. Если не соблюсти это условие, то индукционного поля не будет.
- Медные провода.
- Две катушки. Их можно достать из старых двигателей или же намотать проволоку самостоятельно.
- Листовая сталь для изготовления корпуса.
- Болты, шайбы, шурупы и гвозди. Они необходимы для крепежа небольших элементов.
Вам это будет интересно Паяльники для пайки микросхем
Сначала магнит нужно закрепить на основании катушки. Сделать это можно, если высверлить в нём отверстие, а затем закрепить болтами. Провода на катушках должны быть толщиной в 1,25 мм и иметь слой изоляции. Катушки следует крепить на металлической раме так, чтобы между торцами были небольшие зазоры. Это требуется для свободного вращения основного элемента.
На этом этапе аппарат уже можно использовать. Проверить правильность сборки довольно просто: следует вручную прокрутить магниты. Если конструкция собрана правильно, то на концах обмотки возникнет напряжение.
Это наиболее примитивный генератор, работающий от магнитов. Но на основе такой схемы можно создать устройство, которое будет способно обеспечить электроэнергией весь дом. Также можно приобрести уже готовые аппараты от проверенных производителей.